

1

Proactive Producer and Processor Networks for

Troodos Mountains Agriculture

3PRO-TROODOS

Prot. No: INTEGRATED/0609/061

This document contains information, which is proprietary to the 3PRO-TROODOS consortium. Neither this

document nor the information contained herein shall be used, duplicated, or communicated by any means

to any third party, in whole or in parts, except with prior written consent of the 3PRO-TROODOS

Coordinator.

The information in this document is provided as is and no guarantee or warranty is given that the

information is fit for any particular purpose. The user thereof uses the information at its sole risk and

liability.

Deliverable type Report, Software

Work package number and name
WP6: Adapting agricultural and natural resource

management to quality certification and climate change

Date 10 Dec 2020, Updated 23 Feb 2023.

Responsible Beneficiary PA8

Authors Georgios Michalis, Loizos Kanaris

Classification of Dissemination Public

Short description
D6.1: Sensor Observation Service, database and irrigation

decision support system software platform with report

2

Version Date Changes Partner

V1.0 07-12-2020 Initial Document
PA8, Sigint solutions
Ltd

V2.0 23-02-2023 Complete Rework
PA8, Sigint solutions
Ltd

Disclaimer: The information in this document is subject to change without notice. Company or product

names mentioned in this document may be trademarks or registered trademarks of their respective

companies.

All rights reserved

The document is proprietary of the 3PRO-TROODOS Consortium Members. No copying or distributing in

any form or by any means is allowed without the prior written agreement of the owner of the property

rights.

This document reflects only the authors’ view. The Research & Innovation Foundation is not liable for any

use that may be made for the information contained herein.

3

Contents
Introduction .. 5

Design of a Wireless Sensor Network (WSN) .. 5

Design of a Sensor Observation Service ... 5

Deployment of a WSN .. 5

Software & equipment.. 6

Eagle- PCB design software ... 6

Autodesk Fusion 360 – modelling software ... 7

Visual studio Code .. 7

ESP32 – Microcontroller ... 8

Modem - Waveshare 7600E ... 8

SDI-12 interface. ... 8

Sensors ... 9

Sensor Group .. 9

Power System. .. 11

System modules and measurement methodology ... 12

System modules .. 12

Logger General description ... 12

Sensor’s Module ... 13

Sensor Observation Service Version 1 .. 15

Sensor Observation Service Version 2 .. 18

Introduction .. 18

Terminology .. 19

Terminology related to the user management ... 19

Installing the platform .. 20

Setting up the 3pro platform .. 23

Initializing devices ... 37

4

The 3Pro dashboard .. 41

Creating farmer entities and assigning devices .. 54

Downloading Data ... 60

Description of the other utility applications ... 61

Algorithms and implementation ... 75

Introduction on post processing ... 75

Terminology .. 75

Device Properties .. 78

Device Attributes .. 80

3pro device requirements ... 81

Telemetry Transmission formats .. 89

Mathematical calculations / Theory ... 90

Description of implementation ... 94

Implementation .. 97

Conclusion ... 152

5

Introduction

Specification and technical report of the topology of the sensor observation service and the wireless

sensor network.

To support the 3Pro-Troodos project, SIGINT provides within this technical report the deliverable D.6.1

included into the proposal. More specifically the following activities have been performed:

Design of a Wireless Sensor Network (WSN)
1. Select a group of sensors to collect environmental data

2. Cherry pick the microcontroller to provide interconnection and data collection between the

sensors

3. Design a prototype circuit board (PCB) to support a turnkey solution of connectivity among

the sensors and microcontroller

4. Investigate a solid and robust Network solution based on the area morphology

5. Interconnect the WSN system through software development

6. Design a stand-alone power solution for the system

7. Design a solid and weatherproof structure to provide equipment mounting

8. Deploy the software to interconnect each component and gather the data

Design of a Sensor Observation Service

1. Software architecture of the system

2. Selection of communication architecture including the database scheme and the message

format.

3. Design of the software security levels.

4. Implementation of the Βeta version of the Software platform.

5. Creation of a pilot live website to test the integration with the sensor network.

The software – as part of this deliverable – is available online, to access click here

Deployment of a WSN
1. Manufacture & assembly the PCBs

2. Construct and assembly the mounting system

The irrigation scheduling decision support code was developed in cooperation with Adriana Bruggeman

and colleagues from The Cyprus Institute (see D6.3).

https://cyisites-my.sharepoint.com/:f:/g/personal/c_zoumides_cyi_ac_cy/Eq-s6Ff8jlxCh7q8SzxlpNsB74iYGfLV7XN9XDUsO0HyGg?e=IjPj2L

6

Software & equipment

For the execution of the scope of work, SIGINT utilized the following equipment and software tools:

Eagle- PCB design software

Autodesk EAGLE is an electronic design

automation (EDA) software. Enabling

printed circuit board (PCB) designers to

seamlessly connect schematic diagrams,

component placement, PCB routing, and

comprehensive library content.

7

Autodesk Fusion 360 – modelling
software

Fusion 360 is solid modelling software

that allows you to design models and

assemblies in 3 dimensions. Provides the

breadth of tools to tackle the most

complex problems, and the depth to finish

critical detail work

Visual studio Code

Visual studio code is a Free integrated development environment build on open source that allows you

to code in various programming languages. With the help of various plugins, it can be extended

indefinitely. With the help with the platformio plugin it allows to create and upload firmware in a variety

of microprocessor family, including ESP32 & ESP8266 families.

8

ESP32 – Microcontroller

ESP32 is a series of low-power system on a chip

microcontroller with integrated Wi-Fi 802.11 b/g/n and

Bluetooth. It is equipped with 12bit ADC, I2C bus, SPI and a

couple of GPIOs. The microcontroller is the heart of the

system as it gathers all the information from the sensors

and dispatch it to databases for further evaluation. Due to

its low power consumption it is suitable for stand-alone

operation using batteries as feed in source.

Modem - Waveshare 7600E

Sim7600E, is a multi-band LTE-FDD/LTE-DD/HSPA+

GSM/GPRS/EDGe module. The Sim7600 series integrates

multiple satellite high accuracy positioning systems with

multiple build-in network protocols, and software

functions including abundant interfaces such as UART,

USB, I2C, GPIO which is suitable for main IoT applications

sucks as telematics, surveillance devices, remote sensor

monitoring etc. Due to the UART interface, it can interface

and communicate directly with any microcontroller that

supports Serial communication.

SDI-12 interface.

The TBS01A SDI-12 to UART module is a bi-directional interface for the

conversion of commands and data into SDI-12 format and vice versa. The

module is Plug and Play, targeting cost sensitive data logging

applications. It offers low current consumption, small footprint and easy

integration into products which require a SDI-12 interface.

9

Sensors

A multitude of sensors have been carefully chosen for the projects.

Sensor Group

VEML7700

16bit dynamic sensor range for ambient light detection from 0 lux to

120000 lux.

SMT100

High accuracy soil moisture and soil temperature sensor.

Combines the advantages of the low-cost FDR sensor

systems with the accuracy of a TDR system. Like a TDR, it

measures the travel time of a signal to determine the

dielectric constant of the soil. And like a FDR, it converts this

dielectric constant into an easy to measure frequency. But

unlike an FDR it is not based on a capacitor but utilizes a ring

oscillator to transform the signal’s travel time into the

measure frequency. The resulting frequency (>100 MHz) is

high enough to operate well in clayey soils

Atmos 14.

Meter group atmos 14. A 4-in 1 temperature/ Relative humidity /

Barometric pressure, / Vapor pressure sensor.

10

Atmos 22

Ultrasonic wind sensor. Measures air temperature, air speed, air

direction. Its greatest advantage is that it has no moving parts. A lower

speed threshold makes it well suited for measuring wind within plant

canopies (if needed).

Davis precipitation Sensor

Measures rainfall (water level)

11

Power System.

Since the system will be installed on remote fields were power is not available, a clean energy

production system was installed to provide sufficient power for the system. The systems consist of a

solar panel to convert the solar energy to electrical, batteries to store the energy, and a charger

regulator to control the power in and out of the batteries. Suitable batteries and photovoltaic cells have

been selected for the 2 sensor hubs, so they can have suitable autonomic even on pitch black

conditions. Depending on the measurement frequency a minimum of 1-week standby time is available.

Meteorological

Station / Sensor

Hum

12

System modules and measurement methodology

System modules

Logger General description

The system consists of a waterproof (IP65) enclosure with integrated environmental sensors ,

integrated batteries, and photovoltaic cell for easy charging.

It has enough ports to support 1 to 8 soil moisture and

temperature sensors, as well the capability to support

precipitation and water flow meter sensors. (reducing

the active soil sensors to 6), as well 2 SDI protocol

sensors. (more can be connected using an expansion

board). It can be connected with an internal wifi

antenna (in case wifi is available near the installation

point), and/or an external antenna for 3G/4G cellular

purposes.

Internally all the sensors are connected on the

microcontroller ESP32 from Espressif.

An intelligent application has been written in order to

connect the microprocessors to Sensor observation

Service as well to read sensor’s values using various protocols and techniques such as I2C bus, ADC

(Analogue to Digital Conversion) and UART communication.

For the purpose of data acquisition and

visualization, the MQTT publish-subscribe based

protocol was used. Several topics were created

publishing messages regarding the

environmental measurements as well as system

health monitoring info, such as battery voltage,

date & time and RSSI. To catch up accurate date

and time, the Network Time Protocol was used

(NTP). The accurate data and time are critical for

the proper synchronization of the sensor’s

transmitted parameters. With that being said, only one synchronization event is strictly necessary. The

system will then keep the time in its internal clock, with the NTP synchronization acting only to correct

any small time drifts that make occur occasionally.

The link between the publish/subscribe clients is achieved by the MQTT broker. The broker is at the

heart of any publish/subscribe protocol. Depending on the implementation, a broker can handle up to

13

thousands of concurrently connected MQTT clients. The broker is responsible for receiving all

messages, filtering the messages, determining who is subscribed to each message, and sending the

message to these subscribed clients. The broker also holds the sessions of all persisted clients, including

subscriptions and missed messages.

The system wakes up every 10 minutes and takes environmental data. Then it formats the data creating

a mqtt payload. Depending the selected power settings, it will then store the data for later

transmission, or will transmit the data directly by waking up the cellular interface. It will then go again

to low power mode by disabling the modem and putting the microcontroller in low power mode. Even

on low power mode the pulse channers are still monitored continuously using a separate ultra low

power (ULP) processing unit.

Sensor’s Module

The sensor’s module is using a PCB board designed, and assembled by Sigint Solutions Ltd. This board is

powered up with Li-On researchable batteries and for the reason of non-energy redundancy the system

is set up into deep sleep mode waking up at predefined time intervals (controlled by the NTP). The

The need of an integrated and solid system led into designing, manufacturing and assembly the PCB that

supports the ESP32 and provides connection for a variety of sensors. The PCB is presented below.

The design of the logger is not included in the deliverables. It has been design to simplify the data

acquisition, but the sensor observation platform can use 3rd party loggers. For example most of the

project has been completed using the Truebner loggers.

14

PCB – Assembled

Bare PCB - Front Side

15

Sensor Observation Service Version 1

The sensor observation service consists of a various software components.

The software platform resides in a dedicated webhosting server. The server hosts the services of the

software components:

• The website.

• The Mqtt interface which stores the data in a temporary database.

• A cron job script that preprocesses the data from the temporary database and places them on

the permanent database and on the corresponding user. A cron job is is just a server task that

runs periodically.

• Another cron job that periodically examines the latest stored data for threshold violations and

sends notification to the user.

On the interface itself in high level there are multiple user levels. On the top level is the administrator

that can see all the data

 One level down there is the “User”, which can have a Group of the sensor hub that he owns (for

example a user that wants to monitor the condition in 2 separate locations can have a group with the

sensor hubs on each location).

16

 The user can plot at any time any of the data collected from the any of the sensors of the hubs, at the

desired time range.

17

There is also a way to set thresholds that monitor critical values and provide notifications to the user

when these criteria have been fulfilled.

Internally the Mqtt payloads from the various sensor hubs are being collected and placed on temporary

location in a database. Every minute or so, a routine scans the newly acquired data and processes them

by matching them with the user registered devices, checking the criteria of set thresholds set for that

user (as mentioned before), etc.

18

Sensor Observation Service Version 2

During the initial stages of the project, we made the decision to develop the IoT platform in-house,

believing that we had the necessary expertise and resources to build a customized solution that would

meet our specific needs. However, as the project progressed, it became clear that developing a fully-

featured platform with all the features that we wanted from scratch would be more time-consuming

and resource-intensive than we had anticipated. The initial platform was perfectly fine, but it had some

performance issues and it wasn’t very scalable, and while it would be ok with a few sensors that were

going to be used for the project, it wouldn’t probably be ok for a wider use.

After careful consideration, we decided to explore other options, including using an open source
platform that could be customized to fit our needs. This approach offered several advantages, including:

1. Reduced development time and cost: By leveraging an existing open source platform, we were
able to save time and resources on development, as we did not have to build the platform from
the ground up.

2. Access to a wider range of features: Open source platforms are typically developed and
maintained by a community of developers who contribute to the platform's features and
functionality. This meant that we had access to a wider range of features and capabilities than
we would have been able to develop on our own.

3. Ongoing support and maintenance: By using an open source platform, we had access to ongoing
support and maintenance from the community of developers who were contributing to the
platform. This ensured that the platform would remain up-to-date and functional over time.

So, this version of the platform uses an open source version of a platform (thingsboard) as a base, which
offers great levels of configurability, scalability and security. The rest of the 3pro functionality has been
built on top of that platform using extensive rules, custom dashboards, and widgets, as well as a few
modifications in the source code.

Introduction

To perform the necessary research a number of wireless sensors had to be used to take various
measurements of the state of the soil as well as the environmental conditions in an area. To keep all
these data easily accessible, a sensor observation IoT platform had to be developed.

On the Sensor Platform, device entities of type “3Pro Device” can be added. This device entity will
record the sensor data that is transmitted from the device, and will post process the data accordingly to
give some predictions. But for the data to be post processed successfully some specific parameters
about a device must be set correctly.

19

For more information about the platform and well as installation instructions refer to the relevant
repository of the platform.

The following document contains instructions about how to setup the 3d pro platform, as well as
explanations, terminology, etc.

There are also several repositories with utility tools that can be used to simplify the device configuration
and other stuff.

Terminology

The platform follows a very complicated paradigm for user and device management so a lot of
explanation is needed.

Terminology related to the user management

• Users

• System Administrator

• Tenant administrator

• Assets

• Devices

• Telemetry

• Entities

• Dashboards

• Customers

• Customer Users and Customer Administrators.

1. A user is a user of the platform. It can be a System administrator, tenant administrator, A
customer User Or A customer administrator.

2. System Administrator is a user which is the owner of the thingsboard installation. He has access
to all system resources, and the tenant administrators.

3. The Tenant administrator

 The Tenant administrator is a user that has access to tenants (hereby called customers), and can
view manage and create dashboards, assets, customers, sub users, add devices etc.

 To simplify, assuming that there is not another sub customer at play, the Tenant administrator
on his own, can be thought as an owner of devices. The device Assets. Assets is just a way to
group devices that belong to specific locations. There is no limit on how many assets and devices

20

can be nested. For example, a building as a whole can have X apartments with Y devices each,
and the full building can have additional Devices. How the relations are designed will be
described later in this document.

4. Devices. Devices are devices enteties that contain sensors, which send telemetry data. For
example Argus hub is a device that contains X amount of sensors and transmits Y amount of
telemetry. In thingsboard sensors don't matter. They don't have any representation and it's only
the telemetry that matters.

The telemetry entries are called attributes. There 2 type of attributes. The Server attributes, and the
Telemetry attributes. More information about them will be described later in this document.

5. Telemetry is the measurements that are transmitted from the devices.

6. Dashboards

A dashboard is an interface that displays information about devices.

A dashboard can be static or dynamic, get entries from groups etc. List all devices belonging in a user,
etc. At the same time a dashboard can be shared with multiple users, assuming that they have been
configured correctly to pull the information about the devices of individual users. Dashboards can have
also separate states. A dashboard state is a dashboard configuration which can be configured to display
different things depending the selected device or something similar. more information about the use of
dashboard states will be referenced on the tutorial about how to set a dashboard for multiple device
types.

7. Customers. A customer (or tenant) is an entity that (like the tenant administrator), can own
devices, assets, dashboards etc.

By default a customer is just a business entity. This means that it can own devices assets etc, but by

default it doesn’t have any users. The Customer entity need to have a “customer user”, a “customer
administrator” or both.

The customer can belong To the Tenant Administrator, and the customer in turn can have extra
subcustomers, etc

Installing the platform

Prerequisites

This guide describes how to install ThingsBoard on Ubuntu 18.04 LTS / Ubuntu 20.04 LTS. Hardware
requirements depend on chosen database and amount of devices connected to the system. To run
ThingsBoard and PostgreSQL on a single machine you will need at least 1Gb of RAM.

21

Step 1. Install Java 11 (OpenJDK)

ThingsBoard service is running on Java 11. Follow this instructions to install OpenJDK 11:

sudo apt update
sudo apt install openjdk-11-jdk

Please don’t forget to configure your operating system to use OpenJDK 11 by default. You can
configure which version is the default using the following command:

sudo update-alternatives --config java

You can check the installation using the following command:

java -version

Expected command output is:

openjdk version "11.0.xx"
OpenJDK Runtime Environment (...)
OpenJDK 64-Bit Server VM (build ...)

Step 2. ThingsBoard service installation

Download installation package.

wget https://github.com/thingsboard/thingsboard/releases/download/v3.4.1/thin
gsboard-3.4.1.deb

Install ThingsBoard as a service

sudo dpkg -i thingsboard-3.4.1.deb

PostgreSQL Installation

Instructions listed below will help you to install PostgreSQL.

install **wget** if not already installed:
sudo apt install -y wget

import the repository signing key:
wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo a
pt-key add -

add repository contents to your system:

22

RELEASE=$(lsb_release -cs)
echo "deb http://apt.postgresql.org/pub/repos/apt/ ${RELEASE}"-pgdg main | su
do tee /etc/apt/sources.list.d/pgdg.list

install and launch the postgresql service:
sudo apt update
sudo apt -y install postgresql-12
sudo service postgresql start

Once PostgreSQL is installed you may want to create a new user or set the password for the the
main user. The instructions below will help to set the password for main postgresql user

sudo su - postgres
psql
\password
\q

Then, press “Ctrl+D” to return to main user console and connect to the database to create
thingsboard DB:

psql -U postgres -d postgres -h 127.0.0.1 -W
CREATE DATABASE thingsboard;
\q

ThingsBoard Configuration Edit ThingsBoard configuration file

sudo nano /etc/thingsboard/conf/thingsboard.conf

Add the following lines to the configuration file. Don’t forget to replace
PUT_YOUR_POSTGRESQL_PASSWORD_HERE with your real postgres user password:

DB Configuration
export DATABASE_TS_TYPE=sql
export SPRING_DATASOURCE_URL=jdbc:postgresql://localhost:5432/thingsboard
export SPRING_DATASOURCE_USERNAME=postgres
export SPRING_DATASOURCE_PASSWORD=PUT_YOUR_POSTGRESQL_PASSWORD_HERE
Specify partitioning size for timestamp key-value storage. Allowed values:
DAYS, MONTHS, YEARS, INDEFINITE.
export SQL_POSTGRES_TS_KV_PARTITIONING=MONTHS

Run installation script

Once ThingsBoard service is installed and DB configuration is updated, you can execute the
following script:

23

sudo /usr/share/thingsboard/bin/install/install.sh

Start ThingsBoard service

Execute the following command to start ThingsBoard:

sudo service thingsboard start

You then access the platform on the following url:

http://localhost:8080

The following default credentials are available if you have specified –loadDe
mo during execution of the installation script:

System Administrator: sysadmin@thingsboard.org /sysadmin
Tenant Administrator: tenant@thingsboard.org / tenant
Customer User: customer@thingsboard.org / customer

You can always change passwords for each account in account profile page.

Setting up the 3pro platform

For the platform to work correctly, various dashboards and settings must be imported.

Importing Rule Chains

Press Rule Chains and press the + symbol. Then press on the Import rule chain

24

import the file `3pro_rule_chain.json` which can be found under `Rule Engine` folder on the repository.

The rule chain `3pro` should appear on the list

25

Press on top of the rule chain name and on the resulting page press the button `copy rule chain id`

This will copy the rule chain unique id which will look something like that

`99f7cc50-59e5-11ed-a89c-13427b0e0a64`

Additional information about how the rule chain works can be found at the end of the document on the

section about algorithms and implementations.

Importing device profiles

Navigate on the `Device profiles` folder, and edit the `3pro_Device.json` via a text editor.

Replace the `"id"` with the rule chain id that was copied on the previous step.

26

Save and close the document.

 On the platform, press on the `Device Profiles` and press the `+` symbol.

27

Press the button `Import Device Profile`

on the new tab that will open drop the `3pro_Device.json`.

28

and press import .

The imported device profile should appear in the device profile list.

29

Importing Widgets

Press on the `Widgets library` button, then on the `+` symbol, and finaly on the `Import widgets bundle`

On the new page select the file `3proWidgets.json` which can be found in the `widgets` folder in this

repository.

and press `import`.

The widgets should appear on the widget packages list

30

 Importing dashboards

To import the dashboard, press on the `Dashboards` button on the left, then press the `+` symbol, and

finaly on the `import dashboard`

Import the files `3Pro-Agents-Developers-General-Dashboard.json` and the file `3Pro-General-

Simplified.json.`

The dashboards should appear on the Dashboards list.

To open a dashboard you can press on the following symbol as indicated on the picture

31

though at this point there are no devices installed

Adding devices.

To add a 3pro device, press on the `Devices` button, then on the `+` symbol, and finally on the `add new

device`

32

Name the device with a suitable unique name, and select the correct device profile which should be

`3Pro Device`.

33

Press `add` to finish the device installation.

On the new device on the list press on the device name.

A new page will open with some details about the device.

2 very important tabs in this new page is the `Attributes` `(1)` as well as the `Latest Telemetry` `(2)`

34

`Attributes` are device attributes that can be used from the server for postprocessing the transmitted

data, and `Latest Telemetry` is displaying the latest telemetry that was received from the device.

Information about the device configuration and well the transmission method will be described later in

this document.

Connecting devices

On the new device on the list press on the device name.

A new page will open with some details about the device.

The most important button at this point is the `Copy access token`. This will copy on the clipboard a

token in the following form `NWYs8rdilrTq8JZsWB31`.

This will be used by the device to transmit the data and will be referred to later as $ACCESS_TOKEN

35

Connectivity Options

The device can be connected either via `Mqtt` or via `Http` requests.

MQTT is a lightweight publish-subscribe messaging protocol which probably makes it the most suitable

for various IoT devices

MQTT Connect

To connect the application needs to send MQTT CONNECT message with username that contains

$ACCESS_TOKEN.

Possible return codes, and their reasons during connect sequence:

36

In order to publish telemetry data to ThingsBoard server node, send PUBLISH message to the following

topic:

v1/devices/me/telemetry

Http connect

HTTP is a general-purpose network protocol that can be used in IoT applications. You can find more

information about HTTP here. HTTP protocol is TCP based and uses request-response model.

In order to publish telemetry data to ThingsBoard server node, send POST request to the following URL:

http(s)://host:port/api/v1/$ACCESS_TOKEN/telemetry

Device format

The simplest supported data formats are:

For a single telemetry point:

{
 "key1":"value1",
}
For multiple telemetry points

{
 "key1":"value1",
 "key2":"value2"
}
In this case the server-side timestamp will be assigned to the uploaded telemetry. For the calculations to

be performed correctly, all the measurements for each measurement cycle of the device must be

transmitted at the same time, so all the transmissions have the same timestamp.

37

In case this is not possible, or in case that historical data must be transmitted, the following format is

also possible.

{
 "ts":1451649600512,
 "values": {
 "key1":"value1",
 "key2":"value2"
 }
}
In the example above, we assume that “1451649600512” is a unix timestamp with milliseconds

precision. For example, the value ‘1451649600512’ corresponds to ‘Fri, 01 Jan 2016 12:00:00.512 GMT’

Mqtt transmission example.

To demonstrate the above, below its an example transmission from a windows machine.

and the resulting telemetry on the device page, latest telemetry

Initializing devices

As mentioned multiple times in this document, for the 3Pro postprocessing to work correctly, a
list of server attributes must be set on the device. These can be configured on the device either
from the device dashboard itself, or using the 3ProConfigurator Application which can be found
on another repository.

38

Required parameters.

A new device needs the following parameters.

• dischargeRate: Discharge of the irrigation supply system (one or more drippers or
sprinklers) over the specified field area in L/h

• elevation: The elevation of the of the location of the device. Right now it is not used
in any calculation.

• enableBatteryAlarm: Boolean values that controls if the creation of alarms for low
battery on the device will be active.

• batteryLimit: The value that will act as a limit to trigger the batteryAlarm

• enableInactivityAlarm: Boolean value that control the creation of alarm for device
inactivity. If true inactivity alarm will be triggered when the device doesnt send any
information in a time period larger than inactivityTimeoutMinutes

• fieldCapacity: Volumetric soil water content after 24-48 hour drainage of saturated
soil (cm3_water/cm3_soil), expressed as percentage, e.g., 24

• fieldName: name of the field

• latitude: The latitude of the device location in decimal degrees(ddg)

• longitude: The longitude of the device location in decimal degrees(ddg)

• soilMoistureThreshold: The threshold that will be used to display warning
message on the soil moisture.

• wettedArea: The area wetted by the irrigation system (m2). This area should be
smaller than the field area, unless the whole field is flooded.

• wiltingPoint: is the point at which soil moisture becomes so low that plants are no
longer able to extract water from the soil, and as a result, their leaves wilt. At this point,
the soil is considered to be at its lowest level of plant-available water, and it becomes
difficult for plants to maintain their growth and health.The wilting point is an important
parameter in agriculture and environmental science, as it can be used to determine the
amount of available water in the soil and to make decisions about irrigation and water
management practices. Soil moisture sensors can be used to measure the moisture
content of the soil and determine the wilting point.

• fieldArea: This is the field area (m2) used for the irrigation system discharge. It could
be the area of the full field, of a terrace, or of a single tree.

• inactivityTimeoutMinutes: is used with conjuction with
enableInactivityAlarm to trigger an alarm.

39

• rainPerTick: in case a device has water tipping bucket, this is used to calculate the
actual value of the rain.

• cropCoefficientInitial: Crop coefficient at the start of green up (trees) or
between planting and 10% field cover (field crops). The crop coefficients are used for
checking the irrigation water needs.

• cropCoefficientMid: Crop coefficient for the full maturity stage, starting from near
full canopy cover till the aging of the leafs (drying, yellowing).

• cropCoefficientEnd: Crop coefficient at the end of the growing season when
transpiration stops, such as leaf drop (trees) or harvest (field crops).

• dayStartInitialStage: For field crops from planting to 10% field cover, can be
skipped for trees, so date is same as start development stage

• dayStartDevelopmentStage: For field crops at 10% cover, for trees at leaf out

• dayStartMidSeason: Start of effective full cover (70-80%) or heading/flowering for
field crops

• dayEndMidSeason: Start of crop maturity or leaf drying/coloring

• dayEndLateSeason: For field crops at harvest, for trees start of leaf drop, end of
irrigation season

• transmissionDuration_m: the logger trasmits telemetry in a predetermined period.
This value is used to determine that sensors have transmitted at that predetermined
period. This is not related to the inactivity alarm, because the logger maybe active, with
some of the critical sensors being faulty.

• nameOfTemperatureKey: the name of the telemetry key that is used to calculate the
min, max, and mean temperatures. This is used because there is a possibility that the
logger has more than one temperature sensors, so a way is needed to differentiate the
temperature telemetry kies.

• nameOfHumidityKey. Similarly but for the humidity.

• tempLowLimit: A temperature threshold. Temperature values lower than that
threshold will trigger an alarm to the user. Indicating that the sensor may be faulty (for
example if the sensor indicates -50 °C), or, depending on the settings, some extreme
conditions that the owner of the logger wants to monitor (for example if the limit was
set at -0°C) the soil will be damaged by frost.

• tempHighLimit: A high temperature threshold. Similar to the above description.

• humidityLowLimit: Similarly but for low humidity threshold

• humidityHighLimit: Similarly but for high humidity threshold

• soilMoistureLowLimit: Similarly but for low soil moisture threshold

40

• soilMoistureHighLimit: similarly but for high soil moisture threshold

• soilTemperatureLowLimit: similarly but for low soil temperature threshold.

• soilTemperatureHighLimit: similarly but for high soil temperature threshold

• fcErrorMargin:

• etcErrorMargin:

• fieldConfiguration field configuration is a JSON structure that holds information
about which telemetry keys are used for the calculation of the soil moisture properties.
This is used because for the calculation, each sensor needs additional information that
needs to be configured and to be used on the calculation, like the sensor depth. that
way the sensor names can be used as variables.

Using the 3Pro field configurator

3Pro field configurator has been developed, to make the initial configuration of a device easy to
a user / agent / researcher.

Example of using the application.

Further instructions can be found on its specific application repository.

41

A sample settings file, that can be loaded directly on the 3Pro field configurator can be found
on this repository under the folder Settings Sample

Using the Dashboard

Instructions of using the dashboard for the initial configuration of the device can be found in
the next chapter.

The 3Pro dashboard

After devices with the correct type have been installed in the platform, they will be displayed in
the dashboard pages.

Warning: The device will only be displayed if it is the correct device type.

Clicking on top of the device name will transition to another dashboard page with a lot of
information about the device, charts, etc.

The following dashboard page has various data that are displayed.

On the top of the page, there is the name of the dashboard, the name of the device, an the
time-range that is displayed in the dashboard. On the following example data that have been
transmitted from the device for the last 7 days will be visible.

42

This time can be modified accordingly and all the charts will update to accommodate that new
time range.

43

On the first portion of the dashboard, we have the map display, a list of warning panels, the
configuration panel, and finally some fields with the values that have been configured for that
particular device.

This section has environmental information as well as Charts for soil temperature and soil
moisture.

44

In this section we have the same information as the above, but in a table format. An additional
chart is also on this section with the calculated soil average from all the sensors (which is
processed from the rule engine.)

This section has values that have calculated for each day, like the minimum and maximum
temperature for the previous day, etc.

45

Finally this section has device error codes that can be used with ARGUS IOT logger, as well as
alarms relevant to the device.

Besides the main screen, most widgets have additional information that can be displayed by
pressing on the ... symbol on top of the widget (if it exists)

This will transision to another dashboard state with more information and charts about that
particular telemetry

46

Similarly the device can be configured by pressing on the ... symbol on the top of the red
configure device widget.

This will transision to an additional dashboard page where the required values for that device
can be put, as was described on the section Required parameters.

47

While populating the relevant values, these will be displayed on the Field inform widget.
Any calculated values that are derived from the data are calculated immidiately and are
displayed on the Calculated Values card

48

49

Names of the keys for the dashboard.

While the name of the keys of critical values for the rule engine can be adjusted on the
configuration, this is not the case for the keys that are displayed on the dashboard.

On the list below its a list of the default keys that are used on the dashboard.

'Altitude'
'Ambient Temperature'
'Atmospheric Pressure'
'Battery Percentage'
'Battery Voltage'
'Humidity'
'Luminosity'
'Pressure'
'Pulse 0 Ticks' //For rain measurements
'Relative Humidity'
'Soil Temperature ##' //Soil temperature 01 - 06
'Soil Vol Water Content ##' //Soil moisture 01 - 06
'Vapor Pressure'

In case different keys names are going to be transmitted from the device, and change is not
possible, then these keys must be modified on the dashboard.

To modify the keys for a widget, enter edit mode

Press the pencil icon on the widget

50

Press the pencil icon again on the key name

and change the key on the new page.

51

52

Example

To give a more concrete example the following dashboard is from an already configured device
that already transmits data.

As is visible from the picture, the map displays the location of the device.

Additionally the calculations display a message on widget (1), with Yes or No if the farmer
needs to irrigate.

Even if the answer is NO, it will still display on widget (2) the calculated time for the irrigation.
In the case of the example, the farmer should irrigate for 0.27 time, but, at least for the time
being, the moisture soil levels are not low enough to warrant the irrigation.

Widget (3) displays the following messages if they are applicable

Kc too low or WA_fraction too large.
Kc to High or WA-Fraction too small.

Finally on widget (4) a warning Drainage losses, reduce irrigation duration will
be displayed if the farmer over-irrigates the field.

This particular field has 6 soil sensors. On the first chart with can see the chart for the
temperature of the soil in this 6 particular sensors. On the right we can see another chart which

53

show the soil moisture levels for the same 6 sensors.

On the next section we have the Soil Moisture Table which shows the soil moisture
measurements for each sensor. The soil average for the field can be calculated only if the
measurements all the sensors on the field are available at the same time.

In any case, the soil average plot is displayed on the chart to the right.

On the next section we have all the values that are reported once per day

54

Creating farmer entities and assigning devices

Tenant has the ability to create device and modify dashboards. This should not be the case for a
single farmer that just needs to see his soil moisture levels and get some warnings.

A farmer customer entity can be created with the following way.

Press on the button Customers, then press on the + symbol.

On the new page add the relevant information for the farmer. The only mandatory field is the
Title Then press Add to complete the process.

55

To add a user to this new customer press on the manage customer User icon

On this press on the + symbol and on the new page, add the relevant email and press Add

56

This will create a new activation link which can be used by that customer.

After the activation link has accessed a new page will be displayed, so that the user can create a
new password.

57

On the tenant side of things, to assign the device to that customer, press on the devices tab
Then press the button Assign to customer

Similarly the dashboard must also be assigned to the customer.

to do that press on the Dashboards Tab, then press on the dashboard that needs to be
shared.

In this case the Simplified dashboard will be shared with the user. To do that press on the
manage assigned dashboards button

58

And on the new page, select the customer name from the entity list.

After the dashboard is assigned to customer, it can be assigned as the default dashboard, so it
can be displayed directly at his home screen when he logins on the platform.

To do this, press on the customers when logged in as a tenant.

Then press on the name of the farmer, and on the new page that will open press the percil
icon to edit the details of the customer.

59

On the section Home Dashboard select the dashboard name, and disable the check box Hide
home dashboard toolbar

The farmer should be able to access his devices from the device list, and see his data from the
dashboards.

If a default dashboard was selected for that user, then it will be immidiately visible on the Home
tab

60

Alternative if a default dashboard wasn’t selected, the dashboards can be found on the
Dashboards tab.

Downloading Data

To reduce the potential for abuse the source code for that particular tool is not provided, as it
can be used to perform DoS attacks to thingsboard installations.

The downloader application can be found on the following repository 3pro Data Downloader

To download data run the thingsboard Data Downloader and input the necessary credentials.

After logging in, a list of the available devices will be available.

Select one or more devices and select the time range.

https://github.com/sigintsolutions/3Pro-Data-Downloader

61

Press the download data,

Warning: The download process can take up to 30 minutes to complete for devices with a lot of
data and extended time ranges. (i.e., 2 years of data)

Description of the other utility applications

Data post processor application

The 3 pro data post processor has been developed to give the researcher the ability to process
the data from a field that is monitored retroactively, using different settings.

The data post processor can be found on the following link. Data Post Processor

During normal operation of the platform, every data point that is transmitted is used to
calculate the status of the soil and is used to make predictions. For these calculations to work
the devices must be correctly configured using specific server attributes. For the specific server
attributes as well as description of them refer to 3 pro field configurator git, as well on the main
project git.

The problem with that is that if a researcher changes one of the server attribute, this will only
be taken into effect after the point where the value changed. While this functionality could

https://github.com/sigintsolutions/3pro-data-post-processor

62

have been added in the platform, irresponsible use of this functionality (especially if a device
has data points going back years), will put a major strain on the server.

This application solves this issue by running calculations on a local, downloaded copy of the
data (as described on the section about downloading data.)

Main image of the application.

The application consists of 2 sections, as well as 4 buttons.

63

(1). The device configuration json can be pasted here. Alternative it can be loaded by the use
of button (2) a valid device configuration example file can be found in this repository.

(3) This button open a file selector box that can be used to select a file with the data from the
device. The data from the device must have been downloaded by the DataDownloader
application.

(4) Open blacklisted keys. This opens a file selector box that can be used to select a json with
some blacklisted keys. These keys will be removed from the output file.

Example usage

For demonstration sample files are included in this repository.

64

After opening all the files the Process Data button will become enabled

65

After pressing the button, the application should process the data and save the result as the
with the Processed suffix on the file name. By default the application will generate another
.json as well as .csv file.

Device configurator application

3Pro field configurator has been developed to make the initial configuration of a device easy to
a user / agent / researcher.

To perform the necessary research a number of wireless sensors had to be used to take various
measurements of the state of the soil as well as the environmental conditions in an area. To
keep all these data easily accessible, a sensor observation IoT platform had to be developed.

On the Sensor Platform, device entities of type “3Pro Device” can be added. This device entity
will record the sensor data that is transmitted from the device, and will post process the data
accordingly to give some predictions. But for the data to be post processed successfully some
specific parameters about a device must be set correctly.

Description of server attributes.

• dischargeRate: Discharge of the irrigation supply system (one or more drippers or
sprinklers) over the specified field area in L/h

• elevation: The elevation of the of the location of the device. Right now it is not used
in any calculation.

66

• enableBatteryAlarm: Boolean values that controls if the creation of alarms for low
battery on the device will be active.

• batteryLimit: The value that will act as a limit to trigger the batteryAlarm

• enableInactivityAlarm: Boolean value that control the creation of alarm for device
inactivity. If true inactivity alarm will be triggered when the device doesnt send any
information in a time period larger thaninactivityTimeoutMinutes`

• fieldCapacity: Volumetric soil water content after 24-48 hour drainage of saturated
soil (cm3_water/cm3_soil), expressed as percentage, e.g., 24

• fieldName: name of the field

• latitude: The latitude of the device location in decimal degrees(ddg)

• longitude: The longitude of the device location in decimal degrees(ddg)

• soilMoistureThreshold: The threshold that will be used to display warning
message on the soil moisture.

• wettedArea: The area wetted by the irrigation system (m2). This area should be
smaller than the field area, unless the whole field is flooded.

• wiltingPoint: ASK ADRIANA

• fieldArea: This is the field area (m2) used for the irrigation system discharge. It could
be the area of the full field, of a terrace, or of a single tree.

• inactivityTimeoutMinutes: is used with conjuction with
enableInactivityAlarm to trigger an alarm.

• rainPerTick: in case a device has water tipping bucket, this is used to calculate the
actual value of the rain.

• cropCoefficientInitial: Crop coefficient at the start of green up (trees) or
between planting and 10% field cover (field crops). The crop coefficients are used for
checking the irrigation water needs.

• cropCoefficientMid: Crop coefficient for the full maturity stage, starting from near
full canopy cover till the aging of the leafs (drying, yellowing).

• cropCoefficientEnd: Crop coefficient at the end of the growing season when
transpiration stops, such as leaf drop (trees) or harvest (field crops).

• dayStartInitialStage: For field crops from planting to 10% field cover, can be
skipped for trees, so date is same as start development stage

• dayStartDevelopmentStage: For field crops at 10% cover, for trees at leaf out

• dayStartMidSeason: Start of effective full cover (70-80%) or heading/flowering for
field crops

• dayEndMidSeason: Start of crop maturity or leaf drying/coloring

67

• dayEndLateSeason: For field crops at harvest, for trees start of leaf drop, end of
irrigation season

• transmissionDuration_m: the logger trasmits telemetry in a predetermined period.
This value is used to determine that sensors have transmitted at that predetermined
period. This is not related to the inactivity alarm, because the logger maybe active, with
some of the critical sensors being faulty.

• nameOfTemperatureKey: the name of the telemetry key that is used to calculate the
min, max, and mean temperatures. This is used because there is a possibility that the
logger has more than one temperature sensors, so a way is needed to differentiate the
temperature telemetry kies.

• nameOfHumidityKey. Similarly but for the humidity.

• tempLowLimit: A temperature threshold. Temperature values lower than that
threshold will trigger an alarm to the user. Indicating that the sensor may be faulty (for
example if the sensor indicates -50 °C), or, depending on the settings, some extreme
conditions that the owner of the logger wants to monitor (for example if the limit was
set at -0°C) the soil will be damaged by frost.

• tempHighLimit: A high temperature threshold. Similar to the above description.

• humidityLowLimit: Similarly but for low humidity threshold

• humidityHighLimit: Similarly but for high humidity threshold

• soilMoistureLowLimit: Similarly but for low soil moisture threshold

• soilMoistureHighLimit: similarly but for high soil moisture threshold

• soilTemperatureLowLimit: similarly but for low soil temperature threshold.

• soilTemperatureHighLimit: similarly but for high soil temperature threshold

• fcErrorMargin:

• etcErrorMargin:

• fieldConfiguration field configuration is a JSON structure that holds information
about which telemetry keys are used for the calculation of the soil moisture properties.
This is used because for the calculation, each sensor needs additional information that
needs to be configured and to be used on the calculation, like the sensor depth. that
way the sensor names can be used as variables.

Instructions for application use

The initial screen of the program consists of the login screen.

68

The user can input the url in the first field (1) in the format
https://server.com:port_number

The user must also select the user type by checkbox (2). For more information about the user
types please refer to the main project repository.

69

after successful login on the second tab (1) a list of the available devices for modification (2)
will appear.

Additionally on the same tab there are fields for all the settings that were described above and
needs to be modified.

The current settings can be loaded via the file menu. Similarly the currently displayed settings
can be saved.

A sample for a valid file can be found in this repository.

Additionally, a valid file follows the following format.

70

{
 "dischargeRate": 1920,
 "elevation": 850,
 "enableBatteryAlarm": true,
 "batteryLimit": 20.0,
 "enableInactivityAlarm": true,
 "fieldCapacity": 28.0,
 "fieldName": "Dymes_Plum",
 "latitude": 34.000000,
 "longitude": 32.000000,
 "soilMoistureThreshold": 23.0,
 "wettedArea": 19,
 "wiltingPoint": 18.0,
 "fieldArea": 28.0,
 "inactivityTimeoutMinutes": 120,
 "rainPerTick": 0.2,
 "cropCoefficientInitial": 0.35,
 "cropCoefficientMid": 0.85,
 "cropCoefficientEnd": 0.5,
 "dayStartInitialStage": 1648798140000,
 "dayStartDevelopmentStage": 1648798140000,
 "dayStartMidSeason": 1654068540000,
 "dayEndMidSeason": 1664609340000,
 "dayEndLateSeason": 1667291340000,
 "fcErrorMargin": 2.0,
 "etcErrorMargin": 0.2,
 "transmissionDuration_m": 70,
 "tempLowLimit": -20.0,
 "tempHighLimit": 50.0,
 "humidityLowLimit": 0.5,
 "humidityHighLimit": 100.0,
 "soilMoistureLowLimit": 0.5,
 "soilMoistureHighLimit": 70.0,
 "soilTemperatureLowLimit": -5.0,
 "soilTemperatureHighLimit": 45.0,
 "nameOfTemperatureKey": "Ambient Temperature",
 "nameOfHumidityKey": "Relative Humidity",
 "nameOfRainTicksKey": "Pulse 0 Ticks",
 "fieldConfiguration": {
 "groupsArray": [
 {
 "Crop1": {
 "species": "Whateverium",
 "irrigation": "100%",

71

 "sensorArray": [
 {
 "name": "",
 "meas": "Soil Vol Water Content 01",
 "tempKey": "Soil Temperature 01",
 "soil_thickness": "0.225",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 02",
 "tempKey": "Soil Temperature 02",
 "soil_thickness": "0.20",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 03",
 "tempKey": "Soil Temperature 03",
 "soil_thickness": "0.175",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 04",
 "tempKey": "Soil Temperature 04",
 "soil_thickness": "0.225",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 05",
 "tempKey": "Soil Temperature 05",
 "soil_thickness": "0.20",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 06",
 "tempKey": "Soil Temperature 06",
 "soil_thickness": "0.175",
 "weight": "0.5"
 }
]

72

 }
 }
]
 }
}

After loading the settings file, all the relevant fields will be updated with the loaded values.

Now the settings can be transmitted to the relevant devices by selecting the devices from the
device list (1) and pressing the button (2)

73

Upon pressing of the transmit button, a warning will be displayed

Care must be taken upon the device selection because any transmission will overwrite any
settings on that device with the same attribute name

Before Transmission:

74

After Transmission.

Running the application

Unzip the latest release and run the executable. This application requires net core runtime to
be installed. https://dotnet.microsoft.com/en-us/download

https://dotnet.microsoft.com/en-us/download

75

Algorithms and implementation

Introduction on post processing

While the platform can receive telemetry (ie sensor data points) from any kind of device, there
are specific requirements and algorithms that are used to calculate the state of the soil. To run
these calculations a complicated post processing algorithm was implemented and is executed
every time that telemetry information is received from a 3pro device. The current document
describes the details of that implementation.

Terminology

Rule engine

Rule engine is a post processing engine that events from the device or the dashboard or various
other inputs are processed. Each processing engine is bound to a specific device profile.

Rule chains can be created or set from the Rule chains tab

76

Rule engine consists of various nodes with various functionalities including script nodes. With
the correct combination of nodes the capabilities of the platform can be greatly expanded.

77

78

Mqtt

MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). It is designed as
an extremely lightweight publish/subscribe messaging transport that is ideal for connecting
remote devices with a small code footprint and minimal network bandwidth.

The platform support telemetry transmision using the mqtt protocol, as well as http requests.

Device Properties

Device profile

A tenant administrator is able to configure common settings for multiple devices using Device
profiles. The device profiles can be used in this case to assign specific rule chains to a group of
devices.

Static properties

A Device has various properties. Some of the more mandane properties is the * device name *
device profile * device label * access token. * ## Device telemetry Besides these static values,
the device has telemetry, which corresponds to a sensor measurerement.

A telemetry data point is a single measurement of a sensor and has the following properties

79

• timestamp The timestamp is saved internally in unix standard time in milliseconds
format.

• key The key is the name of of the measurement of the sensor. This has to be unique per
device. For example this name can be Temperature, or something equivalent.

• value: Value is the value of the measurement. internally is stored as string

This values are transmitted from the device using either the mqtt protocol, or http format. The
format that needs to be transmitted is described in a following section.

Besides the telemetry that is transmitted from the device, there are also computed values that
are saved as a telemetry from the post processing chain.

80

Device Attributes

Besides the telemetry, device has also some variables that are called attributes. This come
in 3 different flavors: server attributes, client attributes, shared attributes.

All of them are basically static values that are stored in the device entity in the platform, and
they can be used to store some constants that are used for calculations on the post processing
rule chains, or to display some information to the end user.

Like the telemetry they also have the following properties * key. The key is the name of the
attribute * value the value of the attribute. In contrast with the telemetry values with are
stored internally only as strings, the value of a server attribute can be in different formats like
boolean, string, double, etc

Example of the formats that can be used.

{
 "firmwareVersion":"v2.3.1",
 "booleanParameter":true,
 "doubleParameter":42.0,
 "longParameter":73,
 "configuration": {
 "someNumber": 42,
 "someArray": [1,2,3],
 "someNestedObject": {"key": "value"}
 }
}

For 3Pro only server attributes are used.

81

Dashboard

A dashboard is an interface that is used to display information using to a user using widgets.
The widgets can display plots, or static values taken from any type of attributes, or telemetry
data points. A dashboard can be shared with one or multiple users, and can display information
from one or multiple devices.

3pro device requirements

For the post processing engine and the dashboard to process the correct information the device
needs a specific configuration, with specific names on the server attributes, as well as the
telemetry key names.

Required server attributes

For the device to operate it needs the following server attributes upon creation. The values that
are on the following table are only displayed for example.

82

Attribute name
Data
type Value Units Description

dischargeRate double 150 L/hr

elevation integer 650 m

enableBatteryAlarm boolean TRUE

batteryLimit double 20 %

enableInactivityAlarm boolean TRUE

fieldCapacity double 28 %

fieldName string Dymes_Plum

latitude string ddg

longitude string ddg

soilMoistureThreshold double 23 %

wettedArea double 19.63 m^2

wiltingPoint double 18 %

fieldArea double 25 m^2

inactivityTimeoutMinutes integer 120 m

rainPerTick double 0.2 mm

cropCoefficientInitial double 0.35

cropCoefficientMid double 0.85

cropCoefficientEnd double 0.5

dayStartInitialStage integer 1648771200000 unix
standard
time in
ms

dayStartDevelopmentStage integer 1648771200000 unix
standard
time in
ms

dayStartMidSeason integer 1654041600000 unix
standard
time in
ms

83

Attribute name
Data
type Value Units Description

dayEndMidSeason integer 1664582400000 unix
standard
time in
ms

dayEndLateSeason integer 1667260800000 unix
standard
time in
ms

transmissionDuration_m integer 70

nameOfTemperatureKey string Ambient
Temperature

 This represents the
name of the
temperature key that
will be used on the
calculation of the min
and max
temperatures.

fieldConfiguration JSON A data structure that
stores the name of
the soil moisture keys
that will be used on
the calculation of the
averages

Description of server attributes.

• dischargeRate: Discharge of the irrigation supply system (one or more drippers or
sprinklers) over the specified field area in L/h

• elevation: The elevation of the of the location of the device. Right now it is not used
in any calculation.

• enableBatteryAlarm: Boolean values that controls if the creation of alarms for low
battery on the device will be active.

• batteryLimit: The value that will act as a limit to trigger the batteryAlarm

• enableInactivityAlarm: Boolean value that control the creation of alarm for device
inactivity. If true inactivity alarm will be triggered when the device doesnt send any
information in a time period larger thaninactivityTimeoutMinutes`

84

• fieldCapacity: Volumetric soil water content after 24-48 hour drainage of saturated
soil (cm3_water/cm3_soil), expressed as percentage, e.g., 24

• fieldName: name of the field

• latitude: The latitude of the device location in decimal degrees(ddg)

• longitude: The longitude of the device location in decimal degrees(ddg)

• soilMoistureThreshold: The threshold that will be used to display warning
message on the soil moisture.

• wettedArea: The area wetted by the irrigation system (m2). This area should be
smaller than the field area, unless the whole field is flooded.

• wiltingPoint: ASK ADRIANA

• fieldArea: This is the field area (m2) used for the irrigation system discharge. It could
be the area of the full field, of a terrace, or of a single tree.

• inactivityTimeoutMinutes: is used with conjuction with
enableInactivityAlarm to trigger an alarm.

• rainPerTick: in case a device has water tipping bucket, this is used to calculate the
actual value of the rain.

• cropCoefficientInitial: Crop coefficient at the start of green up (trees) or
between planting and 10% field cover (field crops). The crop coefficients are used for
checking the irrigation water needs.

• cropCoefficientMid: Crop coefficient for the full maturity stage, starting from near
full canopy cover till the aging of the leafs (drying, yellowing).

• cropCoefficientEnd: Crop coefficient at the end of the growing season when
transpiration stops, such as leaf drop (trees) or harvest (field crops).

• dayStartInitialStage: For field crops from planting to 10% field cover, can be
skipped for trees, so date is same as start development stage

• dayStartDevelopmentStage: For field crops at 10% cover, for trees at leaf out

• dayStartMidSeason: Start of effective full cover (70-80%) or heading/flowering for
field crops

• dayEndMidSeason: Start of crop maturity or leaf drying/coloring

• dayEndLateSeason: For field crops at harvest, for trees start of leaf drop, end of
irrigation season

• transmissionDuration_m: the logger trasmits telemetry in a predetermined period.
This value is used to determine that sensors have transmitted at that predetermined
period. This is not related to the inactivity alarm, because the logger maybe active, with
some of the critical sensors being faulty.

85

• nameOfTemperatureKey: the name of the telemetry key that is used to calculate the
min, max, and mean temperatures.

• fieldConfiguration field configuration is a JSON structure that holds information
about which telemetry keys are used for the calculation of the soil moisture properties.
This is used because for the calculation, each sensor needs additional information that
needs to be configured and to be used on the calculation, like the sensor depth. that
way the sensor names can be used as variables.

{
 "fieldConfiguration": {
 "groupsArray": [
 {
 "Crop1": {
 "species": "Dubium",
 "irrigation": "100%",
 "sensorArray": [
 {
 "name": "",
 "meas": "Soil Vol Water Content 01",
 "soil_thickness": "0.225",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 02",
 "soil_thickness": "0.20",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 03",
 "soil_thickness": "0.175",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 04",
 "soil_thickness": "0.25",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 05",

86

 "soil_thickness": "0.20",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 06",
 "soil_thickness": "0.175",
 "weight": "0.5"
 }
]
 }
 }
]
 }
}

while the keys can be generated manually via the device page, the easiest way to add them, is
to use a REST request with the following format.

The displayed values are only used for example.

{
 "cropCoefficient": 0.5,
 "dischargeRate": 150.0,
 "elevation": 650,
 "enableBatteryAlarm": true,
 "batteryLimit": 20.0,
 "enableInactivityAlarm": true,
 "fieldCapacity": 28.0,
 "fieldName": "Dymes_Plum",
 "latitude": 34.911804,
 "longitude": 32.987321,
 "soilMoistureThreshold": 23.0,
 "wettedArea": 19.63,
 "wiltingPoint": 18.0,
 "fieldArea": 25.0,
 "inactivityTimeoutMinutes": 120,
 "rainPerTick":0.2,
 "cropCoefficientInitial":0.35,
 "cropCoefficientMid":0.85,
 "cropCoefficientEnd":0.5,
 "dayStartInitialStage": 1648771200000,
 "dayStartDevelopmentStage": 1648771200000,
 "dayStartMidSeason": 1654041600000,

87

 "dayEndMidSeason": 1664582400000,
 "dayEndLateSeason": 1667260800000,
 "transmissionDuration": 70,
 "nameOfTemperatureKey": "Ambient Temperature",
 "fieldConfiguration": {
 "groupsArray": [
 {
 "Crop1": {
 "species": "Dubium",
 "irrigation": "100%",
 "sensorArray": [
 {
 "name": "",
 "meas": "Soil Vol Water Content 01",
 "soil_thickness": "0.225",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 02",
 "soil_thickness": "0.20",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 03",
 "soil_thickness": "0.175",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 04",
 "soil_thickness": "0.25",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 05",
 "soil_thickness": "0.20",
 "weight": "0.5"
 },
 {
 "name": "",
 "meas": "Soil Vol Water Content 06",

88

 "soil_thickness": "0.175",
 "weight": "0.5"
 }
]
 }
 }
]
 }
}

Auto generated server attributes and telemetry.

Besides the attributes referenced above, during operation the rule chain will generate a series
of additional server attributes, as well as a series of telemetry

These keys are the following.

• wettedAreaFraction: Calculated from
𝑤𝑒𝑡𝑡𝑒𝑑𝐴𝑟𝑒𝑎

𝑓𝑖𝑒𝑙𝑑𝐴𝑟𝑒𝑎

• dayStartInitialStage_JDN. Internal conversion from the dates that the user
inputs to Day of the year format.

• dayStartDevelopmentStage_JDN

• dayStartMidSeason_JDN

• dayEndMidSeason_JDN

• dayEndLateSeason_JDN

• rootDepthSum_m: The root depth summary. Calculated by the sensor information on
the fieldConfiguration

• latitude_rad: Internal converted variable of the latitude ddg

• solarDeclination_rad: solar declination angle for the current day in rad

• sunsetHourNumber_rad: Hour Angle at Sunset in rad

• extraterrestrialRadiation_MJm2day: the radiation produced from the sun at
the top of the atmosphere in units 𝑀𝐽𝑚−2𝑑𝑎𝑦−1

• memory: internal value that is used to find the min and max temperature

• julianDayNumber: the current day of the year

• lastSoilMoistureAverageTimestamp: the timestamp in unix standard time
milliseconds of the last time that the averaging of the soil moisture sensor is performed.
The reason that this variable is needed is because in some loggers the data are
transmitted one at a time.

89

• averageSoilMoistureAtPreviousDayChange: variable that keeps the average soil
moisture at the time of change of the previous day. This is used for various calculations
in conjuction with the current value.

Configuring device

Refer to the configuration application.

Telemetry Transmission formats

While thingsboard supports various transmission formats, with or without timestamps, because
of the post processing which expects data in a specific format, only 3 formats are available to
used.

Format A

Format 1 requires all the telemetry data to be packaged on a same json. The following example
uses only 2 telemetry keys ‘temperature’ and ‘humidity’, but up to 200 telemetry keys can be
used at the same time.

Since the timestamp is not included on the package, the message will receive the timestamp
from time that the server has.

{
 "temperature": 42.2,
 "humidity": 70,
}

Format B

same as format A, but in this case the timestamp is included on the message from the logger.

{
 "ts": 1527863043000,
 "values": {
 "temperature": 42.2,
 "humidity": 70
 }
}

Format C

In situations where the logger cannot transmit all telemetry values at the same time,
A series of telemetry messages can be transmitted as far as they have the same timestamp.

90

The timestamp must be the same or else the rule chain will not be able to recognize that the
soil moisture telemetry values belong in same group and thus, can be averaged together

{
 "ts": 1527863043000,
 "values": {
 "humidity": 70
 }
}

{
 "ts": 1527863043000,
 "values": {
 "temperature": 42.2,
 }
}

Transmission example

Transmission example using Mqtt using format A, using mosquitto application

mosquitto_pub -d -q 1 -h "3PRO_URL" -p 8883 -t "v1/devices/me/telemetry" -u "
DEVICE_ACCESS_TOKEN" -m "{"temperature":"40.21","latitude":"35.110492","longi
tude":"33.342518"}" --cafile "/mnt/c/1/STAR_sigintsolutions_com/AAACertificat
eServices.crt"

This will transmit telemetry data points for ‘temperature’, ‘latitude’, ‘longitude’

Setting the device to use the rule chain

Refer to Initializing devices section

Mathematical calculations / Theory

Constants

To perform the calculation there are some specific information that are known for the field.

These are:

• Latitude as Location of station, in decimal degrees

• Longitude as Location of station, in decimal degrees

91

• Field_capacity Field capacity of soil

• Wilting point Wilting point of soil

• Soil moisture threshold: Soil moisture below which crop becomes stressed,
should be displayed in graphs

• Discharge rate: Irrigation discharge rate over field area (1 tree or multiple trees)

• Field area Field area (Dymes: full terrace)

• Wetted area: Field area wetted by irrigation

• Crop coefficient for initial stage: Kc1

• Crop coefficient for mid season: Kc2

• Crop coefficient at end season: Kc3

• Start initial stage For field crops from planting to 10% field cover, can be
skipped for trees, so date is same as start development stage

• Start development stage: For field crops at 10% cover, for trees at leaf out

• Start mid season: Start of effective full cover (70-80%) or heading/flowering for
field crops represented as day of the year number

• End mid season: Start of crop maturity or leaf drying/coloring, represented as day of
the year number

• End late season: For field crops at harvest, for trees start of leaf drop, end of
irrigation season. represented as day of the year number

There is also the series of sensors that are installed on the field. Each sensor has the following
additional properties * Soil Thickness in m, which represents the thickness of the soil
layer that represents the sensor measurement (cm) * Sensor weight (0 - 1)

for example, on a field with 3 sensors on 3 different depths we would have the following
properties

“name”: “Sensor 1”, “soil_thickness”: “0.225”, “weight”: “0.5”

“name”: “Sensor 2”, “soil_thickness”: “0.20”, “weight”: “0.5”

“name”: “Sensor 3”, “soil_thickness”: “0.20”, “weight”: “0.5”

92

Calculations

• Latitude is converted from decimal degrees to rad

𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑟𝑎𝑑 =
𝜋

180
∗ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒

• Root zone depth RootDepth is calculated by the summation of all the sensor
properties

𝑅𝑜𝑜𝑡𝐷𝑒𝑝𝑡ℎ =∑(𝑆𝑇𝑖 ∗ 𝑊𝑖)

𝑛

𝑖=1

where:

ST is the Soil thickness

W is the weight of the sensor.

• Minimum temperature MinTemp and Maximum temperature MaxTemp is the temperature
minimum and maximum respectively in the field in 24 hours period

• Mean Temperature TemperatureMean is calculated as:

• Wetted Area Fraction WettedAreaFraction is calculated as

𝑊𝑒𝑡𝑡𝑒𝑑𝐴𝑟𝑒𝑎𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑊𝑒𝑡𝑡𝑒𝑑𝐴𝑟𝑒𝑎

𝐹𝑖𝑒𝑙𝑑𝐴𝑟𝑒𝑎

• Soil Moisture Average SoilMoistureAverage is calculated using the following equation.

𝑆𝑜𝑖𝑙𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ (𝑆𝑇𝑖 ∗ 𝑊𝑖 ∗ 𝑆𝑀𝑖)
𝑛
𝑖=1

𝑅𝑜𝑜𝑡𝐷𝑒𝑝𝑡ℎ

• Max Irrigation mm MaxIrrigation_mm is calculated using the following equation

𝑀𝑎𝑥𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑚𝑚 = 0.1 ∗ (𝐹𝑖𝑒𝑙𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑆𝑜𝑖𝑙𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒) ∗ 𝑅𝑜𝑜𝑡𝐷𝑒𝑝𝑡ℎ ∗ 100

• Max Irrigation Hr MaxIrrigation_Hris calculated using the following equation

𝑀𝑎𝑥𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛ℎ𝑟 = 𝑀𝑎𝑥𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑚𝑚 ∗
𝐹𝑖𝑒𝑙𝑑𝐴𝑟𝑒𝑎

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑅𝑎𝑡𝑒

• Max Irrigation Hr.Min MaxIrrigation_HrMin Is calculated using the following
equation.

93

𝑀𝑎𝑥𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝐻𝑟𝑀𝑖𝑛
= 𝑀𝑎𝑥𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛ℎ𝑟 ∗ ⌊𝑀𝑎𝑥𝐼𝑟𝑟𝑢𝑔𝑎𝑡𝑖𝑜𝑛ℎ𝑟⌋

+ (𝑚𝑎𝑥𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛ℎ𝑟 − ⌊𝑀𝑎𝑥𝐼𝑟𝑟𝑢𝑔𝑎𝑡𝑖𝑜𝑛ℎ𝑟⌋) ∗
60

100
)

• Solar Declination SolarDeclination or δ is calculated using the following equation

𝛿 = −23.45° × cos (
360

365
× (𝑑 + 10))

 where:

• the d is the number of days since the start of the year (julian day number)

• The declination angle equals zero at the equinoxes (March 22 and September 22),
positive during the summer in northern hemisphere and negative during winter in the
northern hemisphere. The declination reaches a maximum angle on June 22 which is
23.45° (the northern hemisphere summer solstice) and a minimum angle
on December 21-22 which is of -23.45° (the northern hemisphere winter solstice).

• In the above equation, the +10 is due to the fact that the winter solstice occurs before
the start of the year.

• The equation also assumes the orbit of the sun to be a perfect circle and the fraction of
360/365 converts the number of days to the position in the orbit.

• The apparent northward movement of the Sun during the northern spring, reaching the
celestial equator during the March equinox. The declination reaches a maximum angle
equal to the axial tilt of the Earth’s axial tilt (23.44°) on the June solstice, then starts
decreasing until reaching its minimum (−23.44°) on the December solstice, where its
value is equal to the negative of the axial tilt. Seasons are a direct product of this
variation.

It is then converted to rad using

𝑆𝑜𝑙𝑎𝑟𝐷𝑒𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑟𝑎𝑑 =
𝜋

180
∗ 𝑆𝑜𝑙𝑎𝑟𝐷𝑒𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛

• Sunset hour angle is SunsetHourAngle_rad calculated using the following equation

𝑆𝑢𝑛𝑠𝑒𝑡𝐻𝑜𝑢𝑟𝐴𝑛𝑔𝑙𝑒𝑟𝑎𝑑 = arccos(−tan(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝑟𝑎𝑑) ∗ tan(𝑠𝑜𝑙𝑎𝑟𝐷𝑒𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑟𝑎𝑑))

• Extraterrestial radiation ExtRadiation is calculated using the following equation.

94

$$ ExtRadiation = (24 * \frac{60}{\pi}) * solarConstant * InverseRelativeDistanceEarthSun *\\
((SunsetHourAngle_{rad} * \sin(latitude_{rad}) * \sin(solarDeclination_{rad})) +
(\cos(latitude_{rad}) * \\\cos(solarDeclination_{rad}) * \sin(SunsetHourAngle_{rad}))); $$

where:

𝑆𝑜𝑙𝑎𝑟𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 0.082𝑀𝐽𝑀−2𝑚𝑖𝑛−1

𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐸𝑎𝑟𝑡ℎ𝑆𝑢𝑛 = 1 + 0.033 ∗ cos (
2𝜋

365
∗ 𝐷𝑎𝑦𝑁𝑢𝑚𝑏𝑒𝑟)

• Actual Crop Coefficient, kc is calculated using the following equation

if DayNumber is less than Start initial stage or more than End late season, then
the crop coefficient is assumed as zero because there is no growth of the crop.

When is between Start initial stage and Start development stage, then Kc1 is
used. Between Start development stage and Start mid season, a linear interpolation
is performed between Kc1 and Kc2 When is between Start mid season and End mid
season, then Kc2 is used. Finnaly when between End mid season and End late season,
a linear interpolation is performed between Kc2 and Kc3

• reference evapotranspiration ETO_mm is calculated using the following equation

𝐸𝑇𝑜𝑚𝑚 = 0.0023 ∗ (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑀𝑒𝑎𝑛 + 17.8) ∗ √𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑥 − 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑀𝑖𝑛

∗ 0.408 ∗ 𝐸𝑥𝑡𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛;

• crop evapotranspiration ETc_mm is calculated using the following equation.

𝐸𝑇𝑐𝑚𝑚 = 𝐾𝑐 ∗ 𝐸𝑇𝑜𝑚𝑚

Description of implementation

Since not all the values are available at a single time in the actual platform, there are various
workarounds and tricks that were used to implement the above algorithm. The next section
discusses details about this implementation so any potential developer can modify the chains in
the future.

Explainations of nodes

Switch node

function Switch(msg, metadata, msgType): string[]

95

JavaScript function computing an array of Link names to forward the incoming Message.

Returns: Should return an array of string values presenting link names that the Rule Engine
should use to further route the incoming Message.

Example Forward all messages with temperature value greater than 30 to the ‘High
temperature’ chain, with temperature value lower than 20 to the ‘Low temperature’ chain and
all other messages to the ‘Other’ chain:

if (msg.temperature > 30)
{
 return ['High temperature'];
} else if (msg.temperature < 20)
{
 return ['Low temperature'];
} else
{
 return ['Other'];
}

Script node

function Filter(msg, metadata, msgType): boolean

JavaScript function defines a boolean expression based on the incoming Message and
Metadata.

Returns: a boolean value. If true - routes Message to subsequent rule nodes that are related via
True link, otherwise sends Message to rule nodes related via False link. Uses ‘Failure’ link in
case of any failures to evaluate the expression.

96

Example Forward all messages with temperature value greater than 20 to the True link and all
other messages to the False link. Assumes that incoming messages always contain the
‘temperature’ field:

return msg.temperature > 20;

Transform Script Node

function Transform(msg, metadata, msgType): {msg: object, metadata:
object, msgType: string}

The JavaScript function to transform input Message payload, Metadata and/or Message type to
the output message.

Returns: Should return the object with the following structure:

{
 msg?: {[key: string]: any},
 metadata?: {[key: string]: string},
 msgType?: string
}

All fields in resulting object are optional and will be taken from original message if not specified.

Example Transform value of the ‘temperature’ field from °F to °C:

msg.temperature = (msg.temperature - 32) * 5 / 9;
return {msg: msg};

97

Implementation

The rule chain consists of 5 different group of nodes that perform various operations.

All the messages have 3 basic properties as they come into the rule chain. * msg. This is in a
json format, and can contain telemetry data or other information depending the message
format. * msgType The type of the message. For example when telemetry is incoming the
message type will be POST_TELEMETRY, and when the attributes are updated from the user
the message type will be ATTRIBUTES_UPDATED * metadata various additional information
that can be included on the message, like the timestamp and the device name.

Group 5, Input

Not a lot need to be set for this particular block. At the first level we have the input node, which
takes all the messages that originate for a particular device. These messages can be telemetry
that originates from the actual physical device, or it can be an attribute update that originates
from the device dashboard and is triggered by the user. After the message has been received,
there is a node that switches the message direction and which nodes will be triggered
downstream, depending the message type.

98

The most critical options in this situation is the POST_TELEMETRY and the
ATTRIBUTES_UPDATED.

When the message type is POST_TELEMETRY the message is guided in the save timeseries
node

The telemetry values are then stored in the database for the amount of time that it has been
indicated on the node settings

99

In this case it is 63072000 seconds which corresponds to 2 years of historical data. This means
that 2 years after the record of a datapoint, that datapoint will get purged.

Group 1, Alarms

Group 1 is a collection of nodes which generates some alarms for the device, like alarm for
device inactivity (ie, device is offline)

Originator attributes [1] node

After the values are saved in the database, an originator attributes [1] node, fetches
specific server attributes from the device.

100

more specifically it fetches * enableBatteryAlarm * enableInactivityAlarm *
batteryLimit * inactivityTimeoutMinutes

from the server attributes that were described in the section mentioning the Required server
attributes

If the attributes are not present in the device, the node will report failure. In this case this
should happen only if the device is misconfigured during initialization.

These nodes are used thoughout the rule chain to pull various information when needed. and
after they are pulled, they are stored on the metadata object.

To give an example, all the messages that enter a node have a type IN and a type of OUT during
the exit.

in this case, on input the message had the following properties.

{
 "msg": {
 "Ambient Temperature": 25.9,

101

 "Atmospheric Pressure": 88,
 "Luminosity": 51.3,
 "Soil Temperature 01": 26,
 "Soil Temperature 02": 20.2,
 "Soil Temperature 03": 24.9,
 "Soil Temperature 04": 10.9,
 "Soil Temperature 05": 18,
 "Soil Temperature 06": 19.8,
 "Soil Vol Water Content 01": 20.2,
 "Soil Vol Water Content 02": 23.7,
 "Soil Vol Water Content 03": 36.6,
 "Soil Vol Water Content 04": 3.5,
 "Soil Vol Water Content 05": 18.5,
 "Soil Vol Water Content 06": 40.1
 },
 "metadata" : {
 "deviceName": "3 Pro Irrigation V4",
 "deviceType": "3 pro irrigation v4",
 "ts": "1658923046911"
 }
}

on output the server attributes has been pulled successfully from the database or the device
properties, and the message is modified accordingly.

{
 "msg": {
 "Ambient Temperature": 25.9,
 "Atmospheric Pressure": 88,
 "Luminosity": 51.3,
 "Soil Temperature 01": 26,
 "Soil Temperature 02": 20.2,
 "Soil Temperature 03": 24.9,
 "Soil Temperature 04": 10.9,
 "Soil Temperature 05": 18,
 "Soil Temperature 06": 19.8,
 "Soil Vol Water Content 01": 20.2,
 "Soil Vol Water Content 02": 23.7,
 "Soil Vol Water Content 03": 36.6,
 "Soil Vol Water Content 04": 3.5,
 "Soil Vol Water Content 05": 18.5,
 "Soil Vol Water Content 06": 40.1
 },
 "metadata" : {

102

 "deviceName": "3 Pro Irrigation V4",
 "deviceType": "3 pro irrigation v4",
 "ss_batteryLimit": "30",
 "ss_enableBatteryAlarm": "true",
 "ss_enableInactivityAlarm": "true",
 "ss_inactivityTimeoutMinutes": "120",
 "ts": "1658923046911"
 }
}

one thing to note, is the ss_ suffix. This indicates that this was a server attribute, and they are
stored that way automatically on the metadata.

The in and out values can be examined by enabling the debug mode on each node.

Then on next transmission can be examined on the events tab

Script node [2]

A script node has the ability to execute custom logical operations on the incoming data, and
returns a true or false, which can be used to trigger other nodes downstream.

Script node executers javascript code.

103

in this case the script node is connected via a success relation on the previous node [1] and runs
a check to check if the battery is in a critical level.

The script is the following.

function stringToBool(str)
{
 return (String(str).toLowerCase() == "true");
}

//alarm is stored as string "true". We need to parse it first.
if (stringToBool(metadata.ss_enableBatteryAlarm))
{
 //if message doesn't have that key property then there is no comparison t
hat can be done.
 if (msg.hasOwnProperty('Battery Percentage'))
 {
 if (parseFloat(msg['Battery Percentage']) <= parseFloat(metadata.ss_b
atteryLimit))
 {
 return true;
 }
 }

104

}
return false;

if the node returns true it means that an alarm has to be created. Nodes [4], [7], [8] finish the
creation of the alarm as well as the email message that will be transmitted.

Script node [3]

Similarly script node 3 will be triggered after the originator attribute [1] node, and will execute
a script that will return true when the device is inactive for a period longer than the configured
device timeout.

function stringToBool(str)
{
 return (String(str).toLowerCase() == "true");
}

if (stringToBool(metadata.ss_enableInactivityAlarm))
{
 //one minute in ms is 60000. Date.now() as well as the rest of the timest
amps are stored is unix standard time in milliseconds internally.
 if ((Date.now() + (parseFloat(metadata.ss_inactivityTimeoutMinutes) * 60
000)) > parseFloat(metadata.ss_lastActivityTime))
 {
 return true;
 }
}
return false;

if the node returns true it means that an alarm has to be created. Nodes [5], [6], [8], [9] finish
the creation of the alarm as well as the email message that will be transmitted.

Group 2, Server attributes from dashboard configuration node

The second group is related to the update of the calculated server attributes. The update of the
attributes must be executed when the device is initially configured, as well as when the user
changes a relevant setting from the dashboard. The message types will be POST_ATTRIBUTES
& ATTRIBUTES_UPDATED respectfully. In both situations the nodes in Group 2 must be
triggered, with some exception which would be explained later in this section.

105

This Group is also divided in 2 different groups.

Subgroup 2.1, is triggered when the message is of type POST_ATTRIBUTES. This type of
message will only happen on device configuration, where all the server attributes for the device
will be posted to the device using a helper application.

In this case, this means that several of teh calculations that calculate the additional server
attributes must be performed.

Subgroup 2.1 description.

Memory server attribute initialization.

An originator attributes node, is trying to fetch the memory attribute. Since the device
is just initialized, this means that this server attribute is not available on the database, and the
node will report failure.

106

upon failure, it will trigger a node tranformation script, which will create that variable.
The transformation script runs scripts in javascript language.

var newMsg = {};

//change type to post attributes so that it can be stored as attribute downst
ream.
var msgType = "POST_ATTRIBUTES_REQUEST";

//this will create the memory server attribute with the subproperties initial
ized to unreasonable values.
//they will be overwritten with actual values at the first telemetry transmis
sion.
newMsg.memory = {
 "currentTemperatureMin": 100,
 "currentTemperatureMax": -100,

107

 "rainTicksSummary": 0,
};

return {msg: newMsg, metadata: metadata, msgType: msgType};

This will return a message like this.

{
 "msg": {
 "currentTemperatureMin": 100,
 "currentTemperatureMax": -100,
 "rainTicksSummary": 0,
 },
 "metadata" : {}
}

that message will be transfered to a save attributes node, and since the type of the
message that was just created is of type POST_ATTRIBUTES_REQUEST, it will be stored as
server attribute on that device.

julianDayNumber server attribute initialization.

An originator attributes node, is trying to fetch the julianDayNumber attribute. Since
the device is just initialized, this means that this server attribute is not available on the
database, and the node will report failure.

upon failure, it will trigger a node tranformation script, which will create that variable.

below is the code for that transformation script

var newMsg = {};

//if the previous node failed, that means that julian day number wasn't avail
able,

108

//ie, this is the first time that the device is ininialized.

//helper functions
//returns true if the year is leap.
Date.prototype.isLeapYear = function ()
{
 var year = this.getFullYear();
 if ((year & 3) != 0) return false;
 return ((year % 100) != 0 || (year % 400) == 0);
};

// Get Day of Year
Date.prototype.getDOY = function ()
{
 //array that holds the day count on each month
 var dayCount = [0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334];
 var mn = this.getMonth();
 var dn = this.getDate();
 var dayOfYear = dayCount[mn] + dn;
 //increase by one if the year is leap.
 if (mn > 1 && this.isLeapYear())
 {
 dayOfYear++;
 }
 return dayOfYear;
};

function DegToRad(degrees)
{
 return degrees * (Math.PI / 180.0);
}

var currentDate = new Date();
newMsg.julianDayNumber = currentDate.getDOY();

//change type to post attributes
var msgType = "POST_ATTRIBUTES_REQUEST";

return {msg: newMsg, metadata: metadata, msgType: msgType};

lastSoilMoistureAverageTimestamp server attribute initialization.

An originator attributes node, is trying to fetch the
lastSoilMoistureAverageTimestamp attribute. Since the device is just initialized, this

109

means that this server attribute is not available on the database, and the node will report
failure. which will trigger the execution of another script node.

var newMsg = {};

//change type to post attributes
var msgType = "POST_ATTRIBUTES_REQUEST";

newMsg.lastSoilMoistureAverageTimestamp = 0;
return {msg: newMsg, metadata: metadata, msgType: msgType};

averageSoilMoistureAtPreviousDayChange server attribute initialization.

An originator attributes node, is trying to fetch the
averageSoilMoistureAtPreviousDayChange attribute. Since the device is just initialized,
this means that this server attribute is not available on the database, and the node will report
failure. which will trigger the execution of another script node.

var newMsg = {};

//change type to post attributes
var msgType = "POST_ATTRIBUTES_REQUEST";

newMsg.averageSoilMoistureAtPreviousDayChange = 0;
return {msg: newMsg, metadata: metadata, msgType: msgType};

Subgroup 2.2 description

Subgroup 2.2 is also triggered upon the first initialization of the device; it calculates the
constant server attributes which depend on the configurable server attributes.

Besides that first initialization though, the same calculations have to be performed upon when
the user changes these values in the dashboard.

Calculating wetted area fraction

110

Calculating wetted area fraction requires the server property fieldArea or wettedArea. So
the chain starts by checking if the ATTRIBUTES_UPDATED message has a change on these 2
properties.

The chain starts with a script node with the following code.

if (msg.hasOwnProperty('fieldArea') || msg.hasOwnProperty('wettedArea'))
{
 return true;
}
return false;

On true it will trigger an originator node which will pull both of these field from the server, and
will place them on the metadata. The reason why the values are pulled from the database
instead of using them directly from the message is because if the user updated these
properties, the message contains one or the other, not both of them. One other note is that
since the event is ATTRIBUTES_UPDATED, the values have already been updated on the server
at that point. (so the values that will be pulled by the originator attributes node are already up
to date.)

the originator attributes node triggers a transformation script node on success
with the following code.

//requires the field configuration data as well as
//ss_fieldCapacity
//ss_wettedArea
//ss_soilMoistureThresshold
//ss_dischargeRate
var newMsg = {};

//---calculate wet area fraction
newMsg.wettedAreaFraction = parseFloat(metadata.ss_wettedArea) / parseFloat(m
etadata.ss_fieldArea);
newMsg.wettedAreaFraction = parseFloat(newMsg.wettedAreaFraction.toFixed(3));

//change type to post attributes
var msgType = "POST_ATTRIBUTES_REQUEST";
return {msg: newMsg, metadata: metadata, msgType: msgType};

this creates or updates the server attribute wettedAreaFraction

111

Calculating critical dates

To avoid any issues of parsing dates, or making the user do calculations, the critical dates that
correspond to the beggining of the crops, are stored internally as unix standard time in ms, and
they are selected by the user using standard DateTimeSelectors widget.

112

This means that every time that any of these values change by the user, they have to be
converted to Number of day of the year format

113

This is accomplished by a script node with the following code.

if (msg.hasOwnProperty('dayStartInitialStage') ||
 msg.hasOwnProperty('dayStartDevelopmentStage') ||
 msg.hasOwnProperty('dayStartMidSeason') ||
 msg.hasOwnProperty('dayEndMidSeason') ||
 msg.hasOwnProperty('dayEndLateSeason'))
{
 return true;
}
return false;

this return true when a relevant property is updated.

This will trigger an originator attributes node which will pull all 5 server attributes.

which in turn, will trigger another transformation script node with the following code.

var newMsg = {};

//---calculate the dates as Julian date numbers

//calculate the julian dates for the important dates
var tempDate = new Date(parseInt(metadata.ss_dayStartInitialStage));
newMsg.dayStartInitialStage_JDN = tempDate.getDOY();

tempDate = new Date(parseInt(metadata.ss_dayStartDevelopmentStage));
newMsg.dayStartDevelopmentStage_JDN = tempDate.getDOY();

tempDate = new Date(parseInt(metadata.ss_dayStartMidSeason));
newMsg.dayStartMidSeason_JDN = tempDate.getDOY();

tempDate = new Date(parseInt(metadata.ss_dayEndMidSeason));
newMsg.dayEndMidSeason_JDN = tempDate.getDOY();

tempDate = new Date(parseInt(metadata.ss_dayEndLateSeason));
newMsg.dayEndLateSeason_JDN = tempDate.getDOY();

//change type to post attributes
var msgType = "POST_ATTRIBUTES_REQUEST";

return {msg: newMsg, metadata: metadata, msgType: msgType};

114

which will update (or create) the following properties. * dayStartInitialStage_JDN *
dayStartDevelopmentStage_JDN * dayStartMidSeason_JDN * dayEndMidSeason_JDN *
dayEndLateSeason_JDN

Calculating root zone depth

To calculate the root zone depth, all the information about the soil moisture sensor on the field
are needed.

A script node checks if the update is related to the fieldConfiguration which contains
the sensor information.

if (msg.hasOwnProperty('fieldConfiguration'))
{
 return true;
}
return false;

on true an originator attributes node is fetching the fieldConfiguration server
attribute from the database.

on success, a transformation script is triggered which loops though all the sensor
properties and calculates the rootZoneDepth.

var newMsg = {};

//change type to post attributes
var msgType = "POST_ATTRIBUTES_REQUEST";

var fieldConfiguration = JSON.parse(metadata.ss_fieldConfiguration);

var index = 0;
var name = Object.keys(fieldConfiguration.groupsArray[index]);
var fieldConfiguration = JSON.parse(metadata.ss_fieldConfiguration);
var numberOfSensors = Object.keys(fieldConfiguration.groupsArray[index][name]
.sensorArray).length;
var rootDepthSum_m = 0;

for (var sensorIndex = 0; sensorIndex < numberOfSensors; sensorIndex++)
{
 var sensor = fieldConfiguration.groupsArray[index][name].sensorArray[sens

115

orIndex];
 rootDepthSum_m += sensor.soil_thickness * sensor.weight;
}

newMsg.rootDepthSum_m = rootDepthSum_m;

return {msg: newMsg, metadata: metadata, msgType: msgType};

This creates or updates the rootDepthSum_m server attribute.

Calculating solar properties

The solar properties are dependent on the location of the field. More specifically they are
dependend on the latitude of the sensors.

a script checks that an update has been performed on the latitude server attribute

if (msg.hasOwnProperty('latitude'))
{
 return true;
}
return false;

on true an originator attributes node fetches the julianDayNumber as well as the
latitude from the database.

on success a transformation script node is triggered with teh following code.

function DegToRad(degrees)
{
 return degrees * (Math.PI / 180.0);
}

var newMsg = {};

//also calculate the solar declination and some other things
//---calculate solar properties
//The following equation can be used to calculate the declination angle: δ=−2
3.45°×cos(360/365×(d+10))
// where the d is the number of days since the start of the year (ie julian
day number) The declination angle equals zero at the equinoxes
//(March 22 and September 22), positive during the summer in northern hemisph
ere and negative during winter in the northern hemisphere.
//The declination reaches a maximum angle on June 22 which is 23.45° (the no

116

rthern hemisphere summer solstice) and a minimum angle
//on December 21-22 which is of -23.45° (the northern hemisphere winter solst
ice).
//In the above equation, the +10 is due to the fact that the winter solstice
occurs before the start of the year.
// The equation also assumes the orbit of the sun to be a perfect circle and
the fraction of 360/365
//converts the number of days to the position in the orbit. The apparent nort
hward movement of the Sun during the northern spring,
// reaching the celestial equator during the March equinox. The declination r
eaches a maximum angle equal to the axial
//tilt of the Earth's axial tilt (23.44°) on the June solstice, then starts d
ecreasing until reaching its minimum (−23.44°)
//on the December solstice, where its value is equal to the negative of the a
xial tilt. Seasons are a direct product of this variation.

//---calculate latitude in rad
var latitude_rad = DegToRad(parseFloat(metadata.ss_latitude));

var solarDeclination_rad = DegToRad(-23.45) * Math.cos(DegToRad(360.0 / 365.0
* (parseInt(metadata.ss_julianDayNumber) + 10)));
var sunsetHourNumber_rad = Math.acos(-Math.tan(latitude_rad) * Math.tan(solar
Declination_rad));

var solarConstant_MJM2min = 0.082;
var inverseRelativeDistanceEarthSun = 1 + 0.033 * Math.cos(((2 * Math.PI) / 3
65) * parseInt(metadata.ss_julianDayNumber));

var extraterrestrialRadiation_MJm2day = (24 * 60 / Math.PI) * solarConstant_M
JM2min * inverseRelativeDistanceEarthSun *
 ((sunsetHourNumber_rad * Math.sin(latitude_rad) * Math.sin(solarDeclinati
on_rad)) +
 (Math.cos(latitude_rad) * Math.cos(solarDeclination_rad) * Math.sin(s
unsetHourNumber_rad)));

//add them on message
newMsg.latitude_rad = parseFloat(latitude_rad.toFixed(4));
newMsg.solarDeclination_rad = parseFloat(solarDeclination_rad.toFixed(4));
newMsg.sunsetHourNumber_rad = parseFloat(sunsetHourNumber_rad.toFixed(4));
newMsg.extraterrestrialRadiation_MJm2day = parseFloat(extraterrestrialRadiati
on_MJm2day.toFixed(4));

//change type to post attributes
var msgType = "POST_ATTRIBUTES_REQUEST";

117

return {msg: newMsg, metadata: metadata, msgType: msgType};

This will create or update the following server attributes.

• latitude_rad

• solarDeclination_rad

• sunsetHourNumber_rad

• extraterrestrialRadiation_MJm2day

Group 3, Soil average calculation

Group 3 is related to the calculation of the averaging of the soil moisture sensors.

The calculation starts with a originator attributes node that executes every time that a
value is saved on the database and fetches the sensor attribute fieldConfiguration This
cannot be avoided because the rule chain needs to find the name of the keys that will be used
to trigger the rest of the calculation.

118

After the fieldConfiguration is pulled, the metadata has the following information

{
 "deviceName": "3 Pro Irrigation V4",
 "deviceType": "3 pro irrigation v4",
 "ss_fieldConfiguration": "{\"groupsArray\":[{\"Crop1\":{\"species\":\"Dub
ium\",\"irrigation\":\"100%\",\"sensorArray\":[{\"name\":\"\",\"meas\":\"Soil
Vol Water Content 01\",\"soil_thickness\":\"0.225\",\"weight\":\"0.5\"},{\"na
me\":\"\",\"meas\":\"Soil Vol Water Content 02\",\"soil_thickness\":\"0.20\",
\"weight\":\"0.5\"},{\"name\":\"\",\"meas\":\"Soil Vol Water Content 03\",\"s
oil_thickness\":\"0.175\",\"weight\":\"0.5\"},{\"name\":\"\",\"meas\":\"Soil
Vol Water Content 04\",\"soil_thickness\":\"0.25\",\"weight\":\"0.5\"},{\"nam
e\":\"\",\"meas\":\"Soil Vol Water Content 05\",\"soil_thickness\":\"0.20\",\
"weight\":\"0.5\"},{\"name\":\"\",\"meas\":\"Soil Vol Water Content 06\",\"so
il_thickness\":\"0.175\",\"weight\":\"0.5\"}]}}]}",
 "ts": "1658923046911"
}

On success relation, a script node is triggered with the following code.

//fetch the name of the sensors
var fieldConfiguration = JSON.parse(metadata.ss_fieldConfiguration);

//this works only for the first crop right now
var index = 0;

//get the name of the root object. it will be used to select the sensor array
var name = Object.keys(fieldConfiguration.groupsArray[index]);

119

//get number of sensors on that group.
var numberOfSensors = Object.keys(fieldConfiguration.groupsArray[index][name]
.sensorArray).length;

//first lets check if the keys are available
for (var sensorIndex = 0; sensorIndex < numberOfSensors; sensorIndex++)
{
 var sensor = fieldConfiguration.groupsArray[index][name].sensorArray[sens
orIndex];
 //check if the sensor key exists on the message
 //if the message has the sensor key, we can do more post processing downs
tream.
 if (msg.hasOwnProperty(sensor.meas))
 {
 return true;
 }
}
return false;

This scripts returns true, only if the message telemetry contains one of the keys that are
related to the calculation of the soil moisture average since there is a possibility that the
messages will be received one at a time, and the logger will have an unknown number of
messages, its better to only do the rest of the post processing if the message that came has the
relevant telemetry. In any other way the postprocessing would have to trigger the same
number of times as the number of telemetry messaged that will come on each transmission
cycle from the logger.

on true a switch node is triggered. The switch with the following script:

function nextRelation(metadata, msg)
{

 //fetch the name of the sensors
 var fieldConfiguration = JSON.parse(metadata.ss_fieldConfiguration);

 //this works only for the first crop right now
 var index = 0;

 //get the name of the root object. it will be used to select the sensor a
rray
 var name = Object.keys(fieldConfiguration.groupsArray[index]);

 //get number of sensors on that group.

120

 var numberOfSensors = Object.keys(fieldConfiguration.groupsArray[index][n
ame].sensorArray).length;
 return switchResult (numberOfSensors);
}

function switchResult(value)
{
 switch(value)
 {
 case 1:
 return ['one'];
 case 2:
 return ['two'];
 case 3:
 return ['three'];
 case 4:
 return ['four'];
 case 5:
 return ['five'];
 case 6:
 return ['six'];
 case 7:
 return ['seven'];
 case 8:
 return ['eight'];
 case 9:
 return ['nine'];
 case 10:
 return ['ten'];
 case 11:
 return ['eleven'];
 case 12:
 return ['twelve'];
 default:
 return ['error'];
 }
}

return nextRelation(metadata, msg);

This script counts how many soil moisture sensors are in the field configuration and forwards
the message to a relevant originator attribute node.

121

The reason is that originator attribute node needs to fetch the relevant telemetry for
the database.

For example, the fieldConfiguration that is used on this example, is using 6 different
sensors with names of Soil Vol Water Content ## with numbers from ‘01’ to ‘06’

At this point a high level explaination of why this is needed. When a logger sends all the
telemetry keys on the same package, then averaging is straightfoward because the calculation
is able to be performed directly on the values that are on the incoming message. In case the
logger transmits the messages one at the time. (which can happen if the logger doesn’t have
support for nesting of telemetry, or if any historical data are transmitted). The problem is that it

122

is not possible to know that all the telemetry keys of the same group. So every time that a new
message with the Soil Vol Water Content ## key is received, all the latest messages of
the group are pulled from the database, and they are checked that they have the same
timestamp on later nodes before proceeding.

Similarly, since the keys has to be pulled from the database individually, and the originator
attributes node will report failure if the keys are not available, this means that depending
the number of soil moisture sensors, different originator nodes must handle the pulling of the
database.

Hense, if the number of sensors in the group is six, the originator attributes node with
relation six will be pulled, and that node will pull the 6 latest relevant telemetry-timeseries
keys from the database. Note the use of the Fetch latest telemetry with timestamp
checkbox.

Soil Vol Water Content XX

As well as a number of server attributes that will be used for the calculations
downstream. * transmissionDuration_m * rootDepthSum_m *
lastSoilMoistureAverageTimestamp * fieldCapacity * wettedArea *
dischargeRate * soilMoistureThreshold * wettedAreaFraction * fieldArea

After originator attributes node reports success, the output will have the following
form

{
 "msg":{
 "Soil Temperature 01": 26, //or whatever key was received
 },
 "metadata":{
 "Soil Vol Water Content 01": "{\"ts\":1658923046911,\"value\":20.2}",
 "Soil Vol Water Content 02": "{\"ts\":1658923046911,\"value\":23.7}",
 "Soil Vol Water Content 03": "{\"ts\":1658923046911,\"value\":36.6}",

123

 "Soil Vol Water Content 04": "{\"ts\":1658923046911,\"value\":3.5}",
 "Soil Vol Water Content 05": "{\"ts\":1658923046911,\"value\":18.5}",
 "Soil Vol Water Content 06": "{\"ts\":1658923046911,\"value\":40.1}",
 "deviceName": "3 Pro Irrigation V4",
 "deviceType": "3 pro irrigation v4",
 "ss_dischargeRate": "1920",
 "ss_fieldArea": "110",
 "ss_fieldCapacity": "28.0",
 "ss_fieldConfiguration": "{\"groupsArray\":[{\"Crop1\":{\"species\":\
"Dubium\",\"irrigation\":\"100%\",\"sensorArray\":[{\"name\":\"\",\"meas\":\"
Soil Vol Water Content 01\",\"soil_thickness\":\"0.225\",\"weight\":\"0.5\"},
{\"name\":\"\",\"meas\":\"Soil Vol Water Content 02\",\"soil_thickness\":\"0.
20\",\"weight\":\"0.5\"},{\"name\":\"\",\"meas\":\"Soil Vol Water Content 03\
",\"soil_thickness\":\"0.175\",\"weight\":\"0.5\"},{\"name\":\"\",\"meas\":\"
Soil Vol Water Content 04\",\"soil_thickness\":\"0.25\",\"weight\":\"0.5\"},{
\"name\":\"\",\"meas\":\"Soil Vol Water Content 05\",\"soil_thickness\":\"0.2
0\",\"weight\":\"0.5\"},{\"name\":\"\",\"meas\":\"Soil Vol Water Content 06\"
,\"soil_thickness\":\"0.175\",\"weight\":\"0.5\"}]}}]}",
 "ss_lastSoilMoistureAverageTimestamp": "0",
 "ss_rootDepthSum_m": "0.6125",
 "ss_soilMoistureThreshold": "21",
 "ss_transmissionDuration_m": "70",
 "ss_wettedArea": "39",
 "ss_wettedAreaFraction": "0.355",
 "ts": "1658923046911"
 }
}

Note that the timeseries that were pulled from the database dont include any prefix, and that
the timestamp is included because of the checkbox on the settings of the originator
attribute node.

124

Downstream a switch node is executed with the following code

function nextRelation(metadata, msg)
{
 var fieldConfiguration = JSON.parse(metadata.ss_fieldConfiguration);
 var minutesOffset = 5;
 var transmissionDurationLimit_ms = (parseFloat(metadata.ss_transmissionDu
ration_m) + minutesOffset) * 60000;
 var lastSoilMoistureAverageTimestamp_s = Math.round(parseInt(metadata.ss_
lastSoilMoistureAverageTimestamp) / 1000);

 //this works only for the first crop right now
 var index = 0;

 //get the name of the root object. it will be used to select the sensor a
rray
 var name = Object.keys(fieldConfiguration.groupsArray[index]);

 //get number of sensors on that group.
 var numberOfSensors = Object.keys(fieldConfiguration.groupsArray[index][n
ame].sensorArray).length;

 var timestamp = 0;

125

 //first lets check if the keys are available
 for (var sensorIndex = 0; sensorIndex < numberOfSensors; sensorIndex++)
 {
 var sensor = fieldConfiguration.groupsArray[index][name].sensorArray[
sensorIndex];
 //check if the sensor key exists on the metadata.
 //It should be there 100% since we have success status on the previou
s node as a requirement to execute this node,
 //but better be extra safe
 if (!metadata.hasOwnProperty(sensor.meas))
 {
 return ['doesnt exist']
 }

 //from the first sensor onward start checking the timestamp by compar
ing it with the previous sensor.
 if (sensorIndex >= 1)
 {
 //the name of the sensor exists at the metadata at this point 100
% so fetch it

 //var sensorA = JSON.parse("{\"ts\":1654681764417,\"value\":22.3}
");
 var sensorA = JSON.parse(metadata[sensor.meas]);

 //also fetch the previous sensor for comparison.
 var sensorTemp = fieldConfiguration.groupsArray[index][name].sens
orArray[sensorIndex - 1];
 var sensorB = JSON.parse(metadata[sensorTemp.meas]);
 var timestampA = Math.round(parseInt(sensorA.ts) / 1000); //avoid
an ms comparison. convert them to seconds using int division.
 var timestampB = Math.round(parseInt(sensorB.ts) / 1000);
 if (timestampA !== timestampB)
 {
 return ['different timestamps']
 }
 //save the timestamp so we can use it out of the loop.
 timestamp = timestampA;
 }
 }
 //if we reached that point, all the sensors have the same timestamp, so
 //check that the timestamp is recent enough
 var currentDate = new Date()
 var currentTimeDifference = currentDate.getTime() - (timestamp * 1000);

126

 if (currentTimeDifference >= transmissionDurationLimit_ms)
 {
 return ['sensor timeout'];
 }

 //finaly check that this average hasn't been already stored
 //if the timestamp is the same (or less) than the last time that the aver
age has been stored
 //it means that the value has already been stored, so return false
 if (timestamp <= lastSoilMoistureAverageTimestamp_s)
 {
 return ['already performed'];
 }

 return ['OK'];
}

return nextRelation(metadata, msg);

this function will return OK only if 3 things are true * A. The Soil Moisture keys have all the same
timestamp. * B. The timestamp is different than the last time that the average is performed. *
C. The timestamp of the telemetry happened in the last configured period.

A is because, to have a meaningfull calculation you need all the measurements at the same
time. B, is because without this check, on this example that uses 6 different sensors, the
average would have been computed 6 different times C. If the timestamp is older than current
time - transmissionDurationLimit, then the sensors have an issue and an alarm must be
triggered.

127

The alarm will be triggered using a sensor timeout relation on the exit of that node. On OK
relation a transformation script node will be executed which will calculate the soil
average as well as additional attributes

The script has the following code

//requires the field configuration data as well as
//ss_fieldCapacity
//ss_wettedArea
//ss_soilMoistureThresshold
//ss_dischargeRate
var m_to_cm = 100;

var fieldConfiguration = JSON.parse(metadata.ss_fieldConfiguration);
var rootzoneDepth_cm = parseFloat(metadata.ss_rootDepthSum_m) * m_to_cm;
var latestSoilMoistureTimestamp = 0;

var newMsg = {};

var cropsNumber = Object.keys(fieldConfiguration.groupsArray).length;
//only one group right now
var index = 0;

var averageSoilMoisture = 0; //will store the multiplication of the thicknes
s of the soil

128

var averageSoilMoistureSummary = 0; //will store the sum of the averageSoilMo
isture

//get the name of the root object. it will be used to select the sensor array
var name = Object.keys(fieldConfiguration.groupsArray[index]);

//get number of sensors on that group.
var numberOfSensors = Object.keys(fieldConfiguration.groupsArray[index][name]
.sensorArray).length;

//loop to calculate the averages
for (var sensorIndex = 0; sensorIndex < numberOfSensors; sensorIndex++)
{
 var sensor = fieldConfiguration.groupsArray[index][name].sensorArray[sens
orIndex];
 //get the name of the measurement. it should correspond with the name of
the measurement from the logger.
 var measurementName = sensor.meas;

 //no need to check that the property exists, since this is guarranted fro
m the previous node.
 var sensorSoilThickness = parseFloat(sensor.soil_thickness) * m_to_cm * p
arseFloat(sensor.weight);

 //this will pull the "SoilMoisture01": "{\"ts\":1654681764417,\"value\":2
2.3}" format
 var curSensorFromMetadata = JSON.parse(metadata[measurementName]);

 averageSoilMoisture += sensorSoilThickness * parseFloat(curSensorFromMeta
data.value)

 //store also the timestamp
 latestSoilMoistureTimestamp = parseInt(curSensorFromMetadata.ts);
}

//summarise the total of all the measurements of each sensors in this group.
averageSoilMoistureSummary += averageSoilMoisture;

//and calculate the summary dividing by the total thickness.
var averageSM = averageSoilMoistureSummary / rootzoneDepth_cm;

//finaly generate the new entry

129

newMsg[name + "_AverageSoilMoisture"] = parseFloat(averageSM.toFixed(3));
//-----------process 3

var maxIrrigation_mm = 0;

var temp = 0.1 * (parseFloat(metadata.ss_fieldCapacity) - averageSM) * rootzo
neDepth_cm;
if (temp < 0)
{
 maxIrrigation_mm = 0;
}
else
{
 maxIrrigation_mm = temp * (parseFloat(metadata.ss_wettedAreaFraction));
}

var maxIrrigation_hr = maxIrrigation_mm * parseFloat(metadata.ss_fieldArea) /
parseFloat(metadata.ss_dischargeRate);
var roundMaxIrrugation_hr = Math.floor(maxIrrigation_hr);
newMsg.roundMaxIrrugation_hr = roundMaxIrrugation_hr;
var maxIrrigation_hrmin = roundMaxIrrugation_hr + (maxIrrigation_hr - roundMa
xIrrugation_hr) * (60.0 / 100.0);
var irrigationRequired = averageSM <= parseFloat(metadata.ss_soilMoistureThre
shold);

newMsg[name + "_maxIrrigation_mm"] = parseFloat(maxIrrigation_mm.toFixed(3));
newMsg[name + "_maxIrrigation_hr"] = parseFloat(maxIrrigation_hr.toFixed(3));
newMsg[name + "_maxIrrigation_hrmin"] = parseFloat(maxIrrigation_hrmin.toFixe
d(3));
newMsg[name + "_irrigationRequired"] = irrigationRequired;

//also store the timestamp
newMsg.latestSoilMoistureTimestamp = latestSoilMoistureTimestamp;

return {msg: newMsg, metadata: metadata, msgType: msgType};

return {msg: newMsg, metadata: metadata, msgType: msgType};

The above script calculates andp places it on the message. * Crop1_AverageSoilMoisture
* Crop1_maxIrrigation_mm * Crop1_maxIrrigation_hr *
Crop1_maxIrrigation_hrmin * Crop1_irrigationRequired *
latestSoilMoistureTimestamp

130

The resulting message output on node success is:

{
 "msg":{
 "Crop1_AverageSoilMoisture": 22.271,
 "Crop1_maxIrrigation_mm": 12.456,
 "Crop1_maxIrrigation_hr": 0.714,
 "Crop1_maxIrrigation_hrmin": 0.428,
 "Crop1_irrigationRequired": false,
 "latestSoilMoistureTimestamp": 1658923046911
 },
 "metadata":{
 "Soil Vol Water Content 01": "{\"ts\":1658923046911,\"value\":20.2}",
 "Soil Vol Water Content 02": "{\"ts\":1658923046911,\"value\":23.7}",
 "Soil Vol Water Content 03": "{\"ts\":1658923046911,\"value\":36.6}",
 "Soil Vol Water Content 04": "{\"ts\":1658923046911,\"value\":3.5}",
 "Soil Vol Water Content 05": "{\"ts\":1658923046911,\"value\":18.5}",
 "Soil Vol Water Content 06": "{\"ts\":1658923046911,\"value\":40.1}",
 "deviceName": "3 Pro Irrigation V4",
 "deviceType": "3 pro irrigation v4",
 "ss_dischargeRate": "1920",
 "ss_fieldArea": "110",
 "ss_fieldCapacity": "28.0",
 "ss_fieldConfiguration": "{\"groupsArray\":[{\"Crop1\":{\"species\":\
"Dubium\",\"irrigation\":\"100%\",\"sensorArray\":[{\"name\":\"\",\"meas\":\"
Soil Vol Water Content 01\",\"soil_thickness\":\"0.225\",\"weight\":\"0.5\"},
{\"name\":\"\",\"meas\":\"Soil Vol Water Content 02\",\"soil_thickness\":\"0.
20\",\"weight\":\"0.5\"},{\"name\":\"\",\"meas\":\"Soil Vol Water Content 03\
",\"soil_thickness\":\"0.175\",\"weight\":\"0.5\"},{\"name\":\"\",\"meas\":\"
Soil Vol Water Content 04\",\"soil_thickness\":\"0.25\",\"weight\":\"0.5\"},{
\"name\":\"\",\"meas\":\"Soil Vol Water Content 05\",\"soil_thickness\":\"0.2
0\",\"weight\":\"0.5\"},{\"name\":\"\",\"meas\":\"Soil Vol Water Content 06\"
,\"soil_thickness\":\"0.175\",\"weight\":\"0.5\"}]}}]}",
 "ss_lastSoilMoistureAverageTimestamp": "0",
 "ss_rootDepthSum_m": "0.6125",
 "ss_soilMoistureThreshold": "21",
 "ss_transmissionDuration_m": "70",
 "ss_wettedArea": "39",
 "ss_wettedAreaFraction": "0.355",
 "ts": "1658923046911"
 }
}

131

Of that message the latestSoilMoistureTimestamp must be saved as server attribute,
since there is no need for plotting or keeping historical data for that value. It is only used on the
next cycle of the calculation. The other values must be saved as telemetry / timeseries, so they
can be plotted if need.

To accomplice this on success, 2 additional transformation script nodes are executed.

Script 1 seperates the attributes from the message and has the following code

//create an empty object which will be used to store the final result.
var newMsg = {}; //empty object

newMsg.julianDayNumber = msg.julianDayNumber;
newMsg.latitude_rad = msg.latitude_rad;
newMsg.sunsetHourNumber_rad = msg.sunsetHourNumber_rad;
newMsg.extraterrestrialRadiation_MJm2day = msg.extraterrestrialRadiation_MJm2
day;
//also save this as server attributes so that it is used on the next loop the
next day
newMsg.averageSoilMoistureAtPreviousDayChange = msg.averageSoilMoistureAtDayC
hange;

var msgType = "POST_ATTRIBUTES_REQUEST";

return {msg: newMsg, metadata: metadata, msgType: msgType};

and the following output

{
 "latestSoilMoistureTimestamp": 1658923046911
}

Script 2 separates the timeseries from the message and has the following code

//create an empty object which will be used to store the final result.
var newMsg = {}; //empty object

132

newMsg = msg;
//only remove the latestSoilMoistureTimestamp and keep the rest of the proper
ties
delete newMsg.latestSoilMoistureTimestamp;
var msgType = "POST_TELEMETRY_REQUEST";
return {msg: newMsg, metadata: metadata, msgType: msgType};

and the following output.

msg: {
 "Crop1_AverageSoilMoisture": 22.271,
 "Crop1_maxIrrigation_mm": 12.456,
 "Crop1_maxIrrigation_hr": 0.714,
 "Crop1_maxIrrigation_hrmin": 0.428,
 "Crop1_irrigationRequired": false
}

Group 4, Day change calculations

Group4 of nodes, is responsible of finding the min and max temperature, checking if the day
has changed, and calculate the various daily properties on day change.

every time a new telemetry message is saved on a database an originator attribute
fetches some relevant server attributes from the database.

• julianDayNumber

• memory

133

• nameOfTemperatureKey

• latitude

• rainPerTick

Not all attributes will be used immidiately.

The resulting message will me something like that

{
 "msg": {
 not important.
 },
 "metadata": {
 "deviceName": "3 Pro Irrigation V4",
 "deviceType": "3 pro irrigation v4",
 "ss_julianDayNumber": "208",
 "ss_latitude": "34.9118",
 "ss_memory": "{\"currentTemperatureMin\":18,\"currentTemperatureMax\":39.
9,\"rainTicksSummary\":0}",
 "ss_nameOfTemperatureKey": "Ambient Temperature",
 "ss_rainPerTick": "0.2",
 "ts": "1658923046911"
 }
}

on success, a transformation script is executed

The script has the following code

//create an empty object which will be used to store the final result.
var newMsg = {}; //empty object

//---------------calculate day of the year-----------------------

134

//helper functions
//returns true if the year is leap.
Date.prototype.isLeapYear = function ()
{
 var year = this.getFullYear();
 if ((year & 3) != 0) return false;
 return ((year % 100) != 0 || (year % 400) == 0);
};

// Get Day of Year
Date.prototype.getDOY = function ()
{
 //array that holds the day count on each month
 var dayCount = [0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334];
 var mn = this.getMonth();
 var dn = this.getDate();
 var dayOfYear = dayCount[mn] + dn;
 //increase by one if the year is leap.
 if (mn > 1 && this.isLeapYear())
 {
 dayOfYear++;
 }
 return dayOfYear;
};

function DegToRad(degrees)
{
 return degrees * (Math.PI / 180.0);
}

var currentDate = new Date();
newMsg.julianDayNumber = currentDate.getDOY();

//---------------update memory---------------------

var nameOfTemperatureKey = metadata.ss_nameOfTemperatureKey;
var nameOfRainTicksKey = metadata.ss_nameOfRainTicksKey;

//select the temperature either from the meteorological sensor, or the bme
if ((msg.hasOwnProperty(nameOfTemperatureKey) || msg.hasOwnProperty(nameOfRai
nTicksKey)))
{
 var memoryJSON = JSON.parse(metadata.ss_memory);
 //update the values for the next cycle

135

 //start by updating the temperature when that telemetry arrives
 if (msg.hasOwnProperty(nameOfTemperatureKey))
 {
 var temperature = parseFloat(msg[nameOfTemperatureKey]);
 //update the min and max values for the next loop.
 if (temperature < parseFloat(memoryJSON.currentTemperatureMin))
 {
 memoryJSON.currentTemperatureMin = temperature;
 }

 if (temperature > parseFloat(memoryJSON.currentTemperatureMax))
 {
 memoryJSON.currentTemperatureMax = temperature;
 }

 //also store the last measurement. This is because when we reset
 //the memory on the day change, we would not know which value to use.
 memoryJSON.lastTemperatureMeasurement = temperature;
 }
 //continue by updating the rain
 if (msg.hasOwnProperty(nameOfRainTicksKey))
 {
 var ticks = parseFloat(msg[nameOfRainTicksKey]);
 memoryJSON.rainTicksSummary = parseFloat(memoryJSON.rainTicksSummary)
+ ticks;
 }

 //stringify so you can store it.
 var memory = JSON.stringify(memoryJSON);
 newMsg.memory = memory;
}

return {msg: newMsg, metadata: metadata, msgType: msgType};

The script calculates the: julianDayNumber. If the incoming message has a temperature
key, it also updates the currentTemperatureMin and currentTemperatureMax in the
memory server attribute.

Assuming that the previous message had a temperature key, and that the day has changed:

{
 "msg": {
 "temperature": 40,
 },

136

 "metadata": {
 }
}

The resulting output will be something like that. Note the updated currentTemperatureMax,
and the updated `julianDayNumber

{
 "msg":{
 "julianDayNumber": 209,
 "memory": "{\"currentTemperatureMin\":18,\"currentTemperatureMax\":40
.0,\"rainTicksSummary\":0}"
 }
 "metadata":{
 "deviceName": "3 Pro Irrigation V4",
 "deviceType": "3 pro irrigation v4",
 "ss_julianDayNumber": "208",
 "ss_latitude": "34.9118",
 "ss_memory": "{\"currentTemperatureMin\":18,\"currentTemperatureMax\"
:39.9,\"rainTicksSummary\":0}",
 "ss_nameOfTemperatureKey": "Ambient Temperature",
 "ss_rainPerTick": "0.2",
 "ts": "1658923046911"
 }
}

On success 2 different node chains will be executed.

starting from the bottom chain, a transformation script node is executed with the
following code

//create an empty object which will be used to store the final result.
var newMsg = {}; //empty object

//extract the memory from the message

137

newMsg.memory = msg.memory;
var msgType = "POST_ATTRIBUTES_REQUEST";

return {msg: newMsg, metadata: metadata, msgType: msgType};

The message has to be converted to a POST_ATTRIBUTES_REQUEST to be update, and that
node does exactly that.

The resulting output is

{
 "msg":{
 "memory": "{\"currentTemperatureMin\":18,\"currentTemperatureMax\":40
.0,\"rainTicksSummary\":0}"
 },
}

and the save attributes node saves the memory as server attribute.

On the top chain, a script is executed checking if the day has changed, so it can triggered the
next series of calculations.

the script has the following code

//return true if the day has changed in comparison to the saved date
if (parseInt(metadata.ss_julianDayNumber) != parseInt(msg.julianDayNumber))
{
 return true;
}
return false;

as indicated on the transformation script section above, when the day changes, then the
julianDayNumber on the msg and was just calculated will be different than the
ss_julianDayNumber which was stored on the database. This script returns true when that
change is detected.

on true, an additional transformation script is executed with the following code

function DegToRad(degrees)
{
 return degrees * (Math.PI / 180.0);
}

//create an empty object which will be used to store the final result.

138

var newMsg = {}; //empty object

//at this point we have the memory as well as the julian daty number on the m
essage, as well as some metadata values.

//keep the new day number so we can update that attribute later.
newMsg.julianDayNumber = msg.julianDayNumber;

//also calculate the solar declination and some other things
//---calculate solar properties
//The following equation can be used to calculate the declination angle: δ=−2
3.45°×cos(360/365×(d+10))
// where the d is the number of days since the start of the year The declina
tion angle equals zero at the equinoxes
//(March 22 and September 22), positive during the summer in northern hemisph
ere and negative during winter in the northern hemisphere.
//The declination reaches a maximum angle on June 22 which is 23.45° (the no
rthern hemisphere summer solstice) and a minimum angle
//on December 21-22 which is of -23.45° (the northern hemisphere winter solst
ice).
//In the above equation, the +10 is due to the fact that the winter solstice
occurs before the start of the year.
// The equation also assumes the orbit of the sun to be a perfect circle and
the fraction of 360/365
//converts the number of days to the position in the orbit. The apparent nort
hward movement of the Sun during the northern spring,
// reaching the celestial equator during the March equinox. The declination r
eaches a maximum angle equal to the axial
//tilt of the Earth's axial tilt (23.44°) on the June solstice, then starts d
ecreasing until reaching its minimum (−23.44°)
//on the December solstice, where its value is equal to the negative of the a
xial tilt. Seasons are a direct product of this variation.

//---calculate latitude in rad
var latitude_rad = DegToRad(parseFloat(metadata.ss_latitude));

var solarDeclination_rad = DegToRad(-23.45) * Math.cos(DegToRad(360.0 / 365.0
* (newMsg.julianDayNumber + 10)));
var sunsetHourNumber_rad = Math.acos(-Math.tan(latitude_rad) * Math.tan(solar
Declination_rad));

var solarConstant_MJM2min = 0.082;
var inverseRelativeDistanceEarthSun = 1 + 0.033 * Math.cos(((2 * Math.PI) / 3
65) * newMsg.julianDayNumber);

139

var extraterrestrialRadiation_MJm2day = (24 * 60 / Math.PI) * solarConstant_M
JM2min * inverseRelativeDistanceEarthSun *
 ((sunsetHourNumber_rad * Math.sin(latitude_rad) * Math.sin(solarDeclinati
on_rad)) +
 (Math.cos(latitude_rad) * Math.cos(solarDeclination_rad) * Math.sin(s
unsetHourNumber_rad)));

//add them on message
newMsg.solarDeclination_rad = parseFloat(solarDeclination_rad.toFixed(4));
newMsg.sunsetHourNumber_rad = parseFloat(sunsetHourNumber_rad.toFixed(4));
newMsg.extraterrestrialRadiation_MJm2day = parseFloat(extraterrestrialRadiati
on_MJm2day.toFixed(4));
//also add the julian date

/*now its the time to calculate the min max temperatures.*/
//since the day has changed, the only thing to do is to pull out the current
min and max values.
var memoryJSON = JSON.parse(metadata.ss_memory);

newMsg.minTemperature = parseFloat(memoryJSON.currentTemperatureMin);
newMsg.minTemperature = parseFloat(newMsg.minTemperature.toFixed(2));

newMsg.maxTemperature = parseFloat(memoryJSON.currentTemperatureMax);
newMsg.maxTemperature = parseFloat(newMsg.maxTemperature.toFixed(2));

newMsg.temperatureMean = (newMsg.minTemperature + newMsg.maxTemperature) / 2.
0
newMsg.temperatureMean = parseFloat(newMsg.temperatureMean.toFixed(2));

//update precipitation level per day.
newMsg.precipitationLevel_mm = parseFloat(memoryJSON.rainTicksSummary) * pars
eFloat(metadata.ss_rainPerTick);
newMsg.precipitationLevel_mm = parseFloat(newMsg.precipitationLevel_mm.toFixe
d(2));

//cleanup
newMsg.minTemperature = parseFloat(newMsg.minTemperature.toFixed(2));
newMsg.maxTemperature = parseFloat(newMsg.maxTemperature.toFixed(2));
newMsg.temperatureMean = parseFloat(newMsg.temperatureMean.toFixed(2));
newMsg.precipitationLevel_mm = parseFloat(newMsg.precipitationLevel_mm.toFixe
d(2));

//finaly since the day has changed, we need to reset the memoryJSON

140

newMsg.memory = {
 //initialize as the last measurement, so even if no measurents were perfo
rmed the rest of the day
 //it will not report something absurd like -100 or 100°C,
 "currentTemperatureMin": parseFloat(memoryJSON.lastTemperatureMeasurement
),
 "currentTemperatureMax": parseFloat(memoryJSON.lastTemperatureMeasurement
),
 "rainTicksSummary": 0,
 "lastTemperatureMeasurement": parseFloat(memoryJSON.lastTemperatureMeasur
ement)
};

//at this point we have the new message that has the following attributes
//julianDayNumber
//sunsetHourNumber_rad
//extraterrestrialRadiation_MJm2day

//as well as the following values that need to be stored as telemetry
//minTemperature
//maxTemperature
//temperatureMean
//precipitationLevel_mm
return {msg: newMsg, metadata: metadata, msgType: msgType};

Since the day has changed, this script stores the currently max and min value of the
temperature, as will as it calculates various properties.

More specifically it calculates - minTemperature - maxTemperature - temperatureMean -
precipitationLevel_mm

{
 "msg": {
 "julianDayNumber": 208,
 "latitude_rad": 0.6093,
 "solarDeclination_rad": 0.3352,
 "sunsetHourNumber_rad": 1.8164,
 "extraterrestrialRadiation_MJm2day": 39.8591,
 "minTemperature": 18,
 "maxTemperature": 39.9,
 "temperatureMean": 28.95,
 "precipitationLevel_mm": 0,
 "referenceEvapotranspiration": 8.18
 },

141

 "metadata" : {
 "deviceName": "3 Pro Irrigation V4",
 "deviceType": "3 pro irrigation v4",
 "ss_julianDayNumber": "207",
 "ss_latitude": "34.9118",
 "ss_memory": "{\"currentTemperatureMin\":18,\"currentTemperatureMax\"
:39.9,\"rainTicksSummary\":0}",
 "ss_nameOfTemperatureKey": "Ambient Temperature",
 "ss_rainPerTick": "0.2",
 "ts": "1658921188647"
 }
}

On true an originator node is executed which pulls various values. This operation is
performed only one time per day.

142

The node pulls * solarDeclination_rad * sunsetHourNumber_rad *
extratterestialRadiation_MJm2day * julianDayNumber *
dayStartInitialStage_JDN * dayStartDevelopmentStage_JDN *
dayStartMidSeason_JDN * dayEndMidSeanon_JDN * dayEndLateSeanon_JDN *
cropCoefficientInitial * cropCoefficientMid * cropCoefficientEnd *
averageSoilMoisture * AtPreviousDayChange * wettedAreaFraction *
rootDepthSum_m

as well as the latest timeseries * Crop_AverageSoilMoisture *
Crop_maxIrrigation_hr * Crop_maxIrrugation_hrmin *
Crop_irrigationRequired

These values will have been calculated in the last inactivityTimeoutMinutes minutes on
the Group 3 nodes, and are assumed as “instant” values that will be used in the daily
calculations.

On success the output will be:

143

{
 "msg": {
 "julianDayNumber": 208,
 "solarDeclination_rad": 0.3352,
 "sunsetHourNumber_rad": 1.8164,
 "extraterrestrialRadiation_MJm2day": 39.8591,
 "minTemperature": 18,
 "maxTemperature": 39.9,
 "temperatureMean": 28.95,
 "precipitationLevel_mm": 0,
 "referenceEvapotranspiration": 8.18
},
 "metadata" : {
 "Crop1_AverageSoilMoisture": "{\"ts\":1658839975558,\"value\":31.227}
",
 "Crop1_irrigationRequired": "{\"ts\":1658839975558,\"value\":false}",
 "Crop1_maxIrrigation_hr": "{\"ts\":1658839975558,\"value\":0}",
 "Crop1_maxIrrigation_hrmin": "{\"ts\":1658839975558,\"value\":0}",
 "deviceName": "3 Pro Irrigation V4",
 "deviceType": "3 pro irrigation v4",
 "ss_averageSoilMoistureAtPreviousDayChange": "9.52",
 "ss_cropCoefficientEnd": "0.5",
 "ss_cropCoefficientInitial": "0.36",
 "ss_cropCoefficientMid": "0.85",
 "ss_dayEndLateSeason_JDN": "305",
 "ss_dayEndMidSeason_JDN": "274",
 "ss_dayStartDevelopmentStage_JDN": "91",
 "ss_dayStartInitialStage_JDN": "91",
 "ss_dayStartMidSeason_JDN": "152",
 "ss_extraterrestrialRadiation_MJm2day": "39.954",
 "ss_julianDayNumber": "207",
 "ss_latitude": "34.9118",
 "ss_memory": "{\"currentTemperatureMin\":18,\"currentTemperatureMax\"
:39.9,\"rainTicksSummary\":0}",
 "ss_nameOfTemperatureKey": "Ambient Temperature",
 "ss_rainPerTick": "0.2",
 "ss_rootDepthSum_m": "0.6125",
 "ss_solarDeclination_rad": "0.3431",
 "ss_sunsetHourNumber_rad": "1.8196",
 "ss_wettedAreaFraction": "0.355",
 "ts": "1658921188647"
 }
}

144

On success an transformation script is executed

with the following code

/* at this point we have a message on the chain which has has the following p
roperties
{
 "julianDayNumber": 206,
 "solarDeclination_rad": 0.3431,
 "sunsetHourNumber_rad": 1.8228,
 "extraterrestrialRadiation_MJm2day": 40.0462,
 "minTemperature": 18.2,
 "maxTemperature": 39.3,
 "temperatureMean": 28.75,
 "precipitationLevel_mm": null,
}

we also have the following metadata.
since we pulled the julianDayNumber and the extretterestial radiation from th
e database now before saving the updated values,
we have the calculated values from the previous day, so we can use them on th
e calculations.
{
 "deviceName": "3 Pro Irrigation V4",
 "deviceType": "3 pro irrigation v4",
 "ss_memory": "{\"currentTemperatureMin\":18.2,\"currentTemperatureMax\":3
9.3,\"rainTicksSummary\":0}",
 "ss_nameOfTemperatureKey": "Ambient Temperature",

145

 "ts": "1658757779401"

 "Crop1_AverageSoilMoisture": "{\"ts\":1658757779401,\"value\":26.773}",
 "ss_extraterrestrialRadiation_MJm2day": "40.4648",
 "ss_julianDayNumber": "205",
 "ss_latitude": "34.9118",
 "ss_solarDeclination_rad": "0.3431",
 "ss_sunsetHourNumber_rad": "1.8289",
 "ss_dayStartInitialStage_JDN":"",
 "ss_dayStartDevelopmentStage_JDN":"",
 "ss_dayStartMidSeason_JDN":"",
 "ss_dayEndMidSeason_JDN":"",
 "ss_dayEndLateSeason_JDN":"",
 "ss_cropCoefficientInitial":"",
 "ss_cropCoefficientMid":"",
 "ss_cropCoefficientEnd":"",
 "ss_previousAverageSoilMoisture":"",
 "ss_rootDepthSum_m":"",
 "ss_wettedAreaFraction"":"";
}

we also pulled the
Crop1_AverageSoilMoisture

we need to also find the solar declination rad and sunset hour number rad, as
well as the extraterrestial radiation for for the previous day.
we have pulled this from the database before saving the new values.
*/

function linearInterpolation(x, x1, x2, y1, y2)
{
 return (y1 + (x - x1) * ((y2 - y1) / (x2 - x1)));
}

function digitsFormat(value, numberOfDigits)
{
 return parseFloat(value.toFixed(numberOfDigits));
}

//calculate ETo_mm
var extraterrestrialRadiationPreviousDay_MJm2day = parseFloat(metadata.ss_ext
raterrestrialRadiation_MJm2day);

146

var temperatureMean = parseFloat(msg.temperatureMean);
var temperatureMax = parseFloat(msg.maxTemperature);
var temperatureMin = parseFloat(msg.minTemperature);

var ETo_mm = 0.0023 * (temperatureMean + 17.8) *
 Math.sqrt(temperatureMax - temperatureMin) *
 0.408 * extraterrestrialRadiationPreviousDay_MJm2day;

//calculate actual crop resultCropCoefficient
//parsed variables
var previous_JDN = parseInt(metadata.ss_julianDayNumber);

var dayStartInitialStage_JDN = parseInt(metadata.ss_dayStartInitialStage_JDN)
;
var dayStartDevelopmentStage_JDN = parseInt(metadata.ss_dayStartDevelopmentSt
age_JDN);
var dayStartMidSeason_JDN = parseInt(metadata.ss_dayStartMidSeason_JDN);
var dayEndMidSeason_JDN = parseInt(metadata.ss_dayEndMidSeason_JDN);
var dayEndLateSeason_JDN = parseInt(metadata.ss_dayEndLateSeason_JDN);
var cropCoefficientInitial = parseFloat(metadata.ss_cropCoefficientInitial);
var cropCoefficientMid = parseFloat(metadata.ss_cropCoefficientMid);
var cropCoefficientEnd = parseFloat(metadata.ss_cropCoefficientEnd);

var resultCropCoefficient = 0;

if (previous_JDN < dayStartInitialStage_JDN)
{
 resultCropCoefficient = 0;
}
else if (previous_JDN <= dayStartDevelopmentStage_JDN)
{
 resultCropCoefficient = cropCoefficientInitial;
}
else if (previous_JDN <= dayStartMidSeason_JDN)
{
 resultCropCoefficient = linearInterpolation(previous_JDN, dayStartDevelop
mentStage_JDN, dayStartMidSeason_JDN, cropCoefficientInitial, cropCoefficient
Mid);
}
else if (previous_JDN <= dayEndMidSeason_JDN)
{
 resultCropCoefficient = cropCoefficientMid;
}

147

else if (previous_JDN <= dayEndLateSeason_JDN)
{
 resultCropCoefficient = linearInterpolation(previous_JDN, dayEndMidSeason
_JDN, dayEndLateSeason_JDN, cropCoefficientMid, cropCoefficientEnd);
}
else
{
 resultCropCoefficient = 0;
}

//calculate ETc_mm, whatever is this
var ETc_mm = resultCropCoefficient * ETo_mm;

//add the results to the message

msg.cropΕvapotranspiration_mm = parseFloat(ETc_mm.toFixed(2));
msg.referenceEvapotranspiration_mm = parseFloat(ETo_mm.toFixed(2));
msg.resultCropCoefficient = parseFloat(resultCropCoefficient.toFixed(2));

var averageSoilMoistureAtDayChange;
var maxIrrigation_hrAtDayChange;
var maxIrrigation_hrminAtDayChange;
var irrigationRequiredStatusAtDayChange;

//pull the daily soil moisture summary
if (metadata.hasOwnProperty('Crop1_AverageSoilMoisture'))
{
 averageSoilMoistureAtDayChange = JSON.parse(metadata.Crop1_AverageSoilMoi
sture);
 msg.averageSoilMoistureAtDayChange = parseFloat(averageSoilMoistureAtDayC
hange.value.toFixed(2));
}

if (metadata.hasOwnProperty('Crop1_maxIrrigation_hr'))
{
 maxIrrigation_hrAtDayChange = JSON.parse(metadata.Crop1_maxIrrigation_hr)
;
 msg.maxIrrigation_hrAtDayChange = parseFloat(maxIrrigation_hrAtDayChange.
value.toFixed(2));
}

if (metadata.hasOwnProperty('Crop1_maxIrrigation_hrmin'))
{
 maxIrrigation_hrminAtDayChange = JSON.parse(metadata.Crop1_maxIrrigation_

148

hrmin);
 msg.maxIrrigation_hrminAtDayChange = parseFloat(maxIrrigation_hrminAtDayC
hange.value.toFixed(2));
}

if (metadata.hasOwnProperty('Crop1_irrigationRequired'))
{
 irrigationRequiredStatusAtDayChange = JSON.parse(metadata.Crop1_irrigatio
nRequired);
 msg.irrigationRequiredStatusAtDayChange = irrigationRequiredStatusAtDayCh
ange.value;
}

//calculate deltaSoilMoisture
var averageSoilMoistureAtPreviousDayChange = parseFloat(metadata.ss_averageSo
ilMoistureAtPreviousDayChange);
var deltaSoilMoisture = 0.1 * (msg.averageSoilMoistureAtDayChange - averageSo
ilMoistureAtPreviousDayChange) * parseFloat(metadata.ss_rootDepthSum_m) * par
seFloat(metadata.ss_wettedAreaFraction);

msg.deltaSoilMoisture = parseFloat(deltaSoilMoisture.toFixed(2));

//calculate warning farmer
//calculate warning concultant

return {msg: msg, metadata: metadata, msgType: msgType};

this script calculates * cropΕvapotranspiration_mm *
referenceEvapotranspiration_mm * resultCropCoefficient *
averageSoilMoistureAtDayChange * maxIrrigation_hrAtDayChange *
maxIrrigation_hrminAtDayChange * irrigationRequiredStatusAtDayChange
deltaSoilMoisture

the resulting message will be

{ "msg": {
 "julianDayNumber": 208,
 "latitude_rad": 0.6093,
 "solarDeclination_rad": 0.3352,
 "sunsetHourNumber_rad": 1.8164,
 "extraterrestrialRadiation_MJm2day": 39.8591,
 "minTemperature": 18,
 "maxTemperature": 39.9,
 "temperatureMean": 28.95,

149

 "precipitationLevel_mm": 0,
 "cropΕvapotranspiration_mm": 6.97,
 "referenceEvapotranspiration_mm": 8.2,
 "resultCropCoefficient": 0.85,
 "averageSoilMoistureAtDayChange": 31.23,
 "maxIrrigation_hrAtDayChange": 0,
 "maxIrrigation_hrminAtDayChange": 0,
 "irrigationRequiredStatusAtDayChange": false,
 "deltaSoilMoisture": 0.47
 },
 "metadata": {
 not important
 }
}

Some of these values need to be saved as telemetry / timeseries, and some needs to be saved
as server attributes. So upon successfull calculations 2 transformation scripts are needed to
seperate the timeseries and the attributes

Script 1 is a has the following code

//create an empty object which will be used to store the final result.
var newMsg = {}; //empty object

newMsg.julianDayNumber = msg.julianDayNumber;
newMsg.sunsetHourNumber_rad = msg.sunsetHourNumber_rad;
newMsg.extraterrestrialRadiation_MJm2day = msg.extraterrestrialRadiation_MJm2
day;
//also save this as server attributes so that it is used on the next loop the
next day
newMsg.averageSoilMoistureAtPreviousDayChange = msg.averageSoilMoistureAtDayC

150

hange;
//update the memory
newMsg.memory = msg.memory;

var msgType = "POST_ATTRIBUTES_REQUEST";

return {msg: newMsg, metadata: metadata, msgType: msgType};

more specifically this seperates the: - julianDayNumber whic has been updade on day
change. - latitude_rad - sunsetHourNumber_rad -
extraterrestrialRadiation_MJm2day -
averageSoilMoistureAtPreviousDayChange needs to be stored for calculation of the
delta for the next loop.

the resulting message is

{
 "msg": {
 "julianDayNumber": 208,
 "latitude_rad": 0.6093,
 "sunsetHourNumber_rad": 1.8164,
 "extraterrestrialRadiation_MJm2day": 39.8591,
 "averageSoilMoistureAtPreviousDayChange": 31.23
 },
 "metadata":{
 not important
 }
}

Similarly script 2 seperates the telemetry / timeseries and has the following code .

//create an empty object which will be used to store the final result.
var newMsg = {}; //empty object

//this are the values that are calculated and we need to store as telemetry
newMsg.minTemperature = msg.minTemperature;
newMsg.maxTemperature = msg.maxTemperature;
newMsg.temperatureMean = msg.temperatureMean;
newMsg.precipitationLevel_mm = msg.precipitationLevel_mm;

newMsg.cropEvapotranspiration_mm = msg.cropEvapotranspiration_mm;
newMsg.referenceEvapotranspiration_mm = msg.referenceEvapotranspiration_mm;

151

newMsg.resultCropCoefficient = msg.resultCropCoefficient;
newMsg.warningFarmer = msg.warningFarmer;

if (msg.hasOwnProperty('warningFarmer'))
{
 newMsg.warningFarmer = msg.warningFarmer;
}

if (msg.hasOwnProperty('warningConsultant'))
{
 newMsg.warningConsultant = msg.warningConsultant;
}

if (msg.hasOwnProperty('averageSoilMoistureAtDayChange'))
{
 newMsg.averageSoilMoistureAtDayChange = msg.averageSoilMoistureAtDayChang
e;
}

if (msg.hasOwnProperty('maxIrrigation_hrAtDayChange'))
{
 newMsg.maxIrrigation_hrAtDayChange = msg.maxIrrigation_hrAtDayChange;
}

if (msg.hasOwnProperty('maxIrrigation_hrminAtDayChange'))
{
 newMsg.maxIrrigation_hrminAtDayChange = msg.maxIrrigation_hrminAtDayChang
e;
}

if (msg.hasOwnProperty('irrigationRequiredStatusAtDayChange'))
{
 newMsg.irrigationRequiredStatusAtDayChange = msg.irrigationRequiredStatusA
tDayChange;
}

var msgType = "POST_TELEMETRY_REQUEST";

return {msg: newMsg, metadata: metadata, msgType: msgType};

with the resulting message being

{
 "msg" : {

152

 "minTemperature": 18,
 "maxTemperature": 39.9,
 "temperatureMean": 28.95,
 "precipitationLevel_mm": 0,
 "referenceEvapotranspiration": 8.18,
 "cropΕvapotranspiration_mm": 6.97,
 "referenceEvapotranspiration_mm": 8.2,
 "resultCropCoefficient": 0.85,
 "averageSoilMoistureAtDayChange": 31.23,
 "maxIrrigation_hrAtDayChange": 0,
 "maxIrrigation_hrminAtDayChange": 0,
 "irrigationRequiredStatusAtDayChange": false
 },
 "metadata": {
 not important
 }
}

Conclusion

In conclusion, our IoT platform for collecting data from environmental sensors has proven to be a
successful solution. The platform achieved satisfactory results, meeting our expectations in terms of
battery life and sensor observation system functionality. The platform has demonstrated its ability to
collect, process and analyze data from a range of sensors, providing valuable insights into the
environmental conditions of the study area.

The decision to use an open-source platform was a wise choice on the second iteration of the platform,
as it allowed us to focus our efforts on customizing and optimizing the platform to meet our specific
requirements, while also benefiting from the ongoing support and maintenance of the wider developer
community.

Overall, the success of theproject has demonstrated the potential of IoT technologies in environmental
monitoring and data collection. The platform offers a reliable and efficient solution for collecting and
analyzing environmental data, with potential applications in a wide range of fields, including agriculture,
natural resource management, and climate science.

